
 
Problem Set 7 

 
Problems 5.2, 5.4, 5.8 in Sprott 
 
Then, some practice with the convolution theorem:   
 (Note: You will need only the four transform pairs at the top of our “cheatsheet”.) 
 
1.  If you have a voltage signal V(t) and would like to know its frequency spectrum V(f), you 
will probably want to use a computer to approximate the Fourier transform integral.  But the 
integral requires a continuous function in time, and you can only digitize V(t) at some interval 
Δt and put this discrete set of numbers into the computer and do the Fourier transform on them. 
 
You could imagine generating the discrete set of points by taking the product of V(t) with a 
“picket fence” of delta functions spaced Δt apart.  Use the convolution theorem to prove the 
Nyquist sampling theorem: If V(f) is identically zero for all  f > fNYQUIST, where fNYQUIST ≡1/2Δt, 
then the F.T. of the sampled waveform will be identical to V(f) for f < fNYQUIST. 
 
Make a sketch of the functions you used with the convolution theorem to show how this works.  
Don’t forget the negative frequencies. 
 
 
2. Another problem with your computed approximation for V(f) is that the Fourier integral goes 
from –∞ < t < ∞, and you probably don’t want to take data for that long.  Suppose you take data 
from t = –T/2 to t = + T/2.  Use the convolution theorem to describe the effect on an arbitrary 
spectrum.  Sketch both the true V(f) and the V(f) obtained from the computer for V(t) = 
cos(2π9t) + cos(2π11t).  What is the minimum sampling rate required to avoid aliasing? 
 
 

3. Show that the Heisenberg uncertainty principle, ΔpΔx ≥ !
2

,  is an exact equality if the 

probability distribution for the position,  x, is gaussian.  Δp  and Δx  are the r.m.s. 

uncertainties in position and momentum.  Note that the r.m.s. deviation of a gaussian e
Δx2

2σ 2  is  
σ ,  and the square of a gaussian is another gaussian with r.m.s. deviation smaller by 1 2 . 
 

For non-physicists: The momentum p = h
λ
≡ hw .   (w ≡ 1/λ is called the “wavenumber”)  The 

probability distribution in position is Ψ x( )
2
 and the probability distribution in w is Ψ w( )

2
, 

where Ψ x( )  and Ψ w( )  are a Fourier transform pair.  For a pure momentum state (perfectly 
defined momentum p = hw0 ), Ψ x( ) =Ψ0e

i2πw0x .   To localize this with a probability 
distribution in x around x = x0, we can multiply this Ψ(x)  by a gaussian in x to make a “wave 
packet”: Ψ x( ) =Ψ0e

i2πw0xe(x−x0 )
2 /2σ 2 .    (note that ! ≡ h 2π ) 

	


