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Abstract

The scattering cross section of electrons on noble gas atoms exhibits a very
small value at electron energies near 1 eV. This is the Ramsauer-Townsend
effect and provides an example of a phenomenon which requires a quantum
mechanical description of the interaction of particles.
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Theory

The Ramsauer-Townsend effect can be observed as long as the scattering does not
become inelastic by excitation of the first excited state of the atom. This condition is
best fulfilled by the closed shell noble gas atoms. Physically, the Ramsauer-Townsend
effect may be thought of as a diffraction of the electron around the rare-gas atom, in
which the wave function inside the atom is distorted in just such a way that it fits
on smoothly to an undistorted wave function outside. The effect is analagous to the
perfect transmission found at particular energies in one-dimensional scattering from
a square well. Appendix A (from Ref.[2]) contains a one-dimensional treatment of
scattering from a square well. This is the first model which you will use to analyze
the data. A three-dimensional treatment using partial waves is given in Ref. [4], pp
396-402.

Apparatus

Thyratron - (RCA 2D21)

The tube contains Xenon gas. The assembly is mounted on a stand so that the
filament of the tube is uppermost and so that the tube may be dipped into a liquid
nitrogen dewar. (Note that the voltages being used here are NOT the voltages which
are normally used in thyratron circuits).

Regulated DC Power Supply

The supply provides the voltage to accelerate the electrons. The supply provides 0
to 30 volts but is difficult to adjust for very low voltages. For this reason a control
box containing a potentiometer is used to accurately set the lower voltages.

4-Volt Transformer

The transformer provides the power for the thyratron filament. The tube normally
uses 6.3 volts AC but by running the cathode at a lower temperature the spread in
electron energies is reduced. The transformer is contained in the control box.
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Dewar Flask

The dewar will hold the liquid nitrogen necessary for freezing out the Xenon in the
thyratron tube. The cold data is used to correct for thyratron geometry effects.

Digital Multimeters - (3 1/2 digit Data Precision 1450)

These are high impedance meters used to measure the plate voltage, Vp; the shield
voltage, Vs; and the cathode to shield voltage, (V − Vs).
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Circuit
Diagram

Thratron Socket Wiring Color Code

Pin Internal Connection Color of Wire
1 grid #1 green*
2 cathode black
3 heater red
4 heater red
5 shield (grid #2) no connection
6 anode yellow
7 shield (grid #2) green*

* grid #1 and shield (grid #2) are joined externally
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Procedure

1. Read the article by S.G. Kukolich in the Am. Jour. Phys. 36, 1968 and
understand the one-dimensional scattering from a square well.

2. Set up the circuit as in the diagram on page 4.

3. Allow 5 minutes for the tube filament, cathode and multimeters to heat up and
become stable.

4. Measure the voltages Vs and Vp as a function of the cathode to shield voltage
(V −Vs) with the thyratron at room temperature. Try using values of (V −Vs)
as follows:

from 0.25 to 1.00 volts in steps of 0.05 volts
1.00 to 2.00 volts in steps of 0.1 volts
2.00 to 3.00 volts in steps of 0.2 volts
3.00 to 5.00 volts in steps of 0.5 volts
5.00 to 13.00 volts in steps of 1.0 volts

The purpose of the uneven steps is to give the best detail between 0.3 and 1.0
on the plot of

√
V − Vs. You will find that you cannot increase (V −Vs) to 13V

because the Xenon gas begins to ionize. Do not increase Vs above 3V. Estimate
the voltage at which ionization occurs and compare with the accepted value of
12.13 Volts. The difference is due to the contact potential difference between
cathode and shield.

5. Turn off the filament and gently immerse only the lower blackened part of the
thyratron in liquid nitrogen. Allow it to cool for 15 minutes then turn on the
filament again and allow a further 5 minutes for temperatures to stabilize. The
Xenon will have condensed and frozen at the cold end of the tube.

6. Repeat measurements of Step 4 above at the same values of (V − Vs) to obtain
V ∗

s and V ∗
p . Adjust the tube from time to time to keep the lower end in the

liquid nitrogen.

7. Plot Ip and I∗p against
√

V − Vs.

8. Calculate the probability of transmission (no scattering):

T =
IpI

∗
s

IsI∗p
.
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Since Vp = IpRp

V ∗
p = I∗pRp

Vs = IsRs

V ∗
s = I∗s Rs,

it is easier to calculate:

T =
VpV

∗
s

VsV ∗
p

.

Plot T against
√

V − Vs (which is proportional to the electron momentum).

Plot T against V − Vs (which is proportional to the electron energy).

Note the value of (V − Vs) corresponding to maximum T . Correct your result
for the contact potential difference. The contact potential is best determined
by measuring the the value of V − Vs which makes the current Ip equal to zero.
If there were no contact potential, Ip = 0 would correspond to V −Vs = 0. You
will find that the required value of V − Vs to make Ip = 0 is a reverse polarity.
The value of this offset voltage is the contact potential.

9. Assume that the diameter of a Xenon atom is about 2.8 Å(Xenon is smaller
than Cesium (5.5 Å) because Xenon has closed shells). From your data and
using one-dimensional Quantum Mechanics estimate the average depth of the
square well seen by the electrons.

10. A somewhat more realistic result for the depth of the square well seen by the
electrons can be made by using the three-dimensional square well as a model.
Theory predicts that the scattering will be a minimum when the phase shift δ0

of the ` = 0 partial wave is nπ provided that all other partial wave contributions
are negligible. The condition that the wave function and its derivative must be
continuous at the boundary r = a then becomes

k2a tan k1a = k1a tan k2a

where k = 2π
λ

, λ1 = wave length of the electron inside the square well, and λ2 =
wave length of the free electron. Use this relation to make another estimate of
the depth of the square well.
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Appendix A (From French and Taylor, Section 9-4, pp 379-383)

9-4 SCATTERING BY A ONE-DIMENSIONAL WELL

As a second example of scattering, let us consider the situation shown
in Figure 9-5a. Particles of total energy E (relative to a zero-potential
level represented by region I) encounter a potential “hole” of depth V0
and width L. Partial reflection and transmission must be assumed to
take place at both sides of the well. In regions I and III the wave
numbers have the same value, 2 /1k mE ; in region II there is a

larger wave number, 2 ( ) /2 0k m E V  
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Appropriately extending the analysis of Section 9-2, we can write

1 1

2 2

1

0( )

( )
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(9-10)

You can easily verify that the result of applying the continuity conditions on and
d/dx at x =0 and x = L is the following set of equations:
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(9-11)

Here we have four equations relating five undetermined coefficients; this is enough
information to obtain the values of A, B, C, and D as fractions of A0 , To calculate
the transmission coefficient T of the well we need to find the value of D/A0. The
algebra of this is not difficult. From the first pair of Eqs. 9-11 we easily find:

1 0 2 1 2 12 ( ) ( )k A k k B k k C   

From the second pair of Eqs. 9-11 we can find B and C in terms of D:

1 2

1 2

2 1
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2 1
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2
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Substituting these expressions for B and C in the preceding equation then leads to
the result:

2 2 12 2
1 2 0 2 1 2 14 [( ) ( ) ]ik L ik L ik Lk k A k k e k k e De    (9-12)

The quantity 2
0/D A is the ratio of probability density in the transmitted

beam to that in the beam incident on the well. Since, however, the potential energy
is the same on both sides of the well (and hence k has the same value) the ratio

2

0/D A as given by Eq. 9-12 is also the ratio of transmitted current to incident

current. That is, the transmission coefficient T is equal to 2
0/D A . The form of its
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variation with particle energy is shown in Figure 9-5b.
Without evaluating the general result (done in exercise 9-11), we can identify

certain properties of this scattering system:

1. For k1 << k2 (incident particle energy E much less than well depth V0) we
have:

2 2 1 1
2 2

1 2 0 2 2 24 ( ) (2 sin )ik L ik L ik L ik Lk k A k e e De ik k L De   .

Therefore:
2

1
2 2

2 2

4 .
sin

kT
k k L



Here, k1 is proportional to E , and 2 0( 2 ( ) / )k m V E   is approximately
constant as E is varied. Hence T ~ E (the transmission of the well rises linearly
with incident particle energy.3)

2. For E >> V0, we have 2 1k k , in which case:

1 12 22
1 1 14 [(2 ) ] 4ik L ik Lk A k e De k D  .

Therefore 1.T 
Thus for incident particle energies much bigger than the well depth, the
transmission approaches 100 percent.

3. For 2k L n , we have a very interesting resonance condition. For values
of k2 satisfying this condition (n integral) we have:

2 2 1ik L ik Le e  (n even)
2 2 1ik L ik Le e  (n odd)

3 This result does not hold if 2 as 0.k L n E  In that case 1 as 0T E  , in the
manner described in property 3 below.
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Under these conditions, Eq. 9-8 gives us (exactly):

12 2
1 2 0 2 1 2 14 [( ) ( ) ] .ik Lk k A k k k k De   

Therefore:

1
0 and 1.ik LA De T 

Thus for all energies such that 2k L n the well is completely transparent to the
incident particles. The condition for this to happen ( 2 /k n L ) corresponds to the
width L of the well being equal to an integral number of half-wavelengths of the
wave function II inside the well. We have 2 22 /k  , and hence:

22L n .

This behavior is closely analogous to the selective transmission of light of
particular wavelengths by a thin layer of glass or dielectric—an effect that is
exploited in optical interference filters, which by a careful choice of thickness
transmit light within a narrow band of wavelengths with far less attenuation than
occurs with normal colored filters (which work by selective absorption).

The wave-mechanical transparency of a potential well is observed in the
scattering of electrons by noble-gas atoms, and is known as the Ramsauer effect. It
manifests itself as a minimum in the cross section (target area) presented by atoms
to incident electrons at a certain value of the electron energy. If an atom of radius
R could be regarded as a simple rectangular well of width L = 2R, the above
analysis would imply a minimum in the cross section for 2 = 4R, corresponding

to an electron kinetic energy inside the well equal to
2 2

2 2
2

, or
322

h h
mRm

. For

0

1 AR  , this would give a value of about 10 eV. Actual experiments (Figure 9-6)
show a minimum cross section for an incident electron energy of only about 1 eV.
A full 3 dimensional model is required for a more accurate result.
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