Physics 623 — Problem Set 6

N		C	С.
1	•		٠,٠

Which is better for low-noise applications, bipolar or field-effect (FET) transistors? Answer the following questions.

1. Input noise specifications for two high-performance op-amps (both advertised as "Low-noise") are given as follows.

OP-27: Ultra-low noise bipolar op amp
$$e_{n-A} = 3 \text{ nV/sqrt(Hz)}$$
 $i_{n-A} = 0.4 \text{ pA/sqrt(Hz)}$

LF-347: Low-noise FET-input op amp
$$e_{n-A} = 18 \text{ nV/sqrt(Hz)}$$
 $i_{n-A} = 0.01 \text{ pA/sqrt(Hz)}$

miscellaneous useful data: Room temperature = 300 K, $k_B = 1.38 \text{ x } 10^{-23} \text{ J/K}$.

a) for each of these op amps, calculate the *Noise Resistance*, R_N , which is the value of the source resistance for which the *Noise Temperature*, T_N , is a minimum. (T_N is the physical temperature the source resitance would need to have for its Johnson noise to equal the total noise due to the amplifier, giving a *Noise Figure* of 3 dB. (Noise Figure, NF, is the ratio of total noise at the amplifier output to what it would be with an ideal amplifier with $e_{n-A} = i_{n-A} = 0$. This is usually expressed in dB.) Show your work!

OP-27:
$$R_{\rm N} =$$
_____ ohms

LF-347:
$$R_{\rm N} =$$
 ohms

b) Give the minimum value for the noise temperature, $T_{\rm N}$, that can be achieved with each amplifier:

OP-27:
$$T_N =$$
 K for $R_S = R_N$

LF-347:
$$T_N = K$$
 for $R_S = R_N$

- c) Which op amp would be better (lower Noise Figure) for:
 - i) measuring the potential of a pH electrode with a source impedance of 5 Megohms?

ii) measuring the voltage across a thermocouple with a resistance of 3 ohms?

best amp	lifier	
Dest ann.	milici.	

	ce equal the vo	ltage
noise of the OP-27?		ohms
Is the current noise of the op-amp significant for this R_S ?	yes / no	-
Explain:		
e) Using an LF-347, what bandwidth must be used to measure a 1 μV r.m.s. signal	to 1% rms pre	cision if
the source resistance is 10 ⁶ ohms?		_Hz
About how long would it take to make one measurement with this bandwidth?		