
Physics 623:  HW 10 
 
Some practice with the convolution theorem. 
 
reference: The Fourier transform cheatsheet contains all the transform pairs you need and 
a diagram showing the convolution theorem.  It’s available on the course website if you 
didn’t pick up a copy. 
 
1.  If you have a voltage signal V(t) and would like to know its frequency spectrum V(f), 
you will probably want to use a computer to approximate the Fourier transform integral.  
But the integral requires a continuous function in time, and you can only digitize V(t) at 
some interval Dt and put this discrete set of numbers into the computer and do the Fourier 
transform on them. 
 
You could imagine generating the discrete set of points by taking the product of V(t) with 
a “picket fence” of delta functions spaced Dt apart.  Use the convolution theorem to prove 
the Nyquist sampling theorem: If V(f) is identically zero for all  f > fNYQUIST, where fNYQUIST 
º1/2Dt, then the F.T. of the sampled waveform will be identical to V(f) for f < fNYQUIST. 
 
 
2. Another problem with your computed approximation for V(f) is that the Fourier 
integral goes from –¥ < t < ¥, and you probably don’t want to take data for that long.  
Suppose you take data from t = –T/2 to t = + T/2.  Use the convolution theorem to 
describe the effect on an arbitrary spectrum.  Sketch both the true V(f) and the V(f) 
obtained from the computer for V(t) = cos(2p9t) + cos(2p11t).  What is the minimum 
sampling rate required to avoid aliasing? 
 
 

3. For fun:  Show that the Heisenberg uncertainty principle, ,  is an exact 

equality if the probability distribution for the position, x, is gaussian.   and  are 
the r.m.s. uncertainties in position and momentum.  Note that the r.m.s. deviation of a 

gaussian  is ,  and the square of a gaussian is another gaussian with r.m.s. 
deviation smaller by . 
 
For non-physicists: The momentum , where w is the wavenumber 
(cycles/meter).   The probability distribution in position is  and the probability 
distribution in w is , where  and  are a Fourier transform pair.  For a 
pure momentum state, .  To localize this with a probability distribution 
in x, we can replace  by a gaussian of some width to make a “wave packet”.    (Note 
that .) 
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4.	Use	the	convolution	theorem	to	prove	the	trigonometric	identity:	

	

(This	is	easier	to	sketch	and	think	about	if	you	make	 .)	
	
The	phase	detector	for	the	lab	we	did	is	effectively	a	multiplier	that	takes	advantage	
of	this	to	convert	two	frequencies	into	their	sum	and	difference.		The	technique,	
called	heterodyne,	is	also	widely	used	in	radio	receivers	and	other	instruments.	
	
	
	
5.	Use	the	convolution	theorem	to	find	the	apparent	frequency	spectrum	derived	
from	a	1-second	observation	of	the	sum	of	two	cosine	waves,	one	at	f	=	9	Hz	and	one	
at	f	=	11	Hz.		Both	have	amplitudes	of	1	V	peak.		Sketch	the	spectrum	that	would	be	
obtained.		(Note	that	you	can	mathematically	reproduce	a	one-second	observation	
by	multiplying	the	infinite	time	sequence	by	a	rectangular	function	that	is	1.0	
between	t	=	–0.5	s	and	t	=	+0.5	s	and	zero	elsewhere.)	
	
	
	
6.		The	sinc	function	that	smears	the	spectrum	observed	for	a	finite	length	of	time	is	
shown	in	blue	at	the	left	below	(compare	problem	3).		The	oscillations	can	create	
confusing	features	in	a	spectrum	that	has	both	strong	and	weak	sharp	lines	in	it.		
The	problem	can	be	alleviated	by	multiplying	the	sampled	time	function	by	another	
“window”	function	that	falls	off	more	gently	before	doing	the	Fourier	transform.		
One	common	function	that	is	used	is	called	a	“Hanning	window”.		If	the	time	
sequence	is	observed	for	a	time	T,	the	Hanning	window	function	is:	
	
	
	

																					 	

	
	
	
	
This	goes	smoothly	to	zero	as	the	ends	of	the	observing	interval	are	approached.		
The	new	smearing	function	will	be	the	Fourier	transform	of	this	Hanning	window.			
You	can	use	the	convolution	theorem	again	to	find	this	transform	without	doing	any	
integrals	(some	nasty	addition	required)	if	you	construct	the	Hanning	window	as	a	
continuous	1+cos	multiplied	by	a	rectangle	function	of	length	T.		(Since	FTs	are	
linear,	the	FT	of	a	sum	is	just	the	sum	of	the	FTs.		You	need	to	know	that	the	FT	of	a	
constant	is	a	delta	function	at	zero	frequency	to	do	the	“1”	part.		Both	terms	have	
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unit	amplitude,	but	the	cosine	amplitude	is	split	half	and	half	between	positive	and	
negative	frequencies.)		The	result	is	the	red	curve	on	the	left,	although	this	won’t	be	
obvious	unless	you	plot	your	solution.		You	can	do	this,	or	just	give	the	formula	and	
plug	in	a	couple	of	key	points	to	check	against	red	plot	on	the	left	below.)		Applying	
this	type	of	window	to	a	data	sample	is	called	“apodization”,	or	“removing	the	feet”.		
Note	the	tradeoff	—	the	Hanning	window	greatly	reduces	the	extraneous	features	
far	from	the	main	response,	but	there	is	significant	loss	of	resolution	in	the	main	
peak	(it	is	broader).		The	squares	of	these	smearing	functions	are	shown	on	the	right	
in	blue	and	red	and	the	absolute	values	in	green	and	orange.		These	are	what	would	
appear	in	power	spectra	(V2)	and	Vr.m.s.	spectra	respectively.	
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