
 

i 
-

 

 



 

ii 
-

 

CONTENTS 

CHAPTER 1   HARDWARE DESIGN ......................................................................................................................... 1 

1.1 REQUIRED FEATURES ................................................................................................................................................ 1 

1.2 CREATION OF HARDWARE DESIGN ............................................................................................................................ 1 

1.3 DOWNLOAD HARDWARE DESIGN TO TARGET FPGA ............................................................................................... 68 

CHAPTER 2   NIOS II SOFTWARE BUILD TOOLS FOR ECLIPSE .................................................................. 71 

2.1 CREATE THE HELLO_WORLD EXAMPLE PROJECT .................................................................................................... 71 

2.2 BUILD AND RUN THE PROGRAM .............................................................................................................................. 76 

2.3 EDIT AND RE-RUN THE PROGRAM ........................................................................................................................... 78 

2.4 WHY THE LED BLINKS ........................................................................................................................................... 80 

2.5 DEBUGGING THE APPLICATION................................................................................................................................ 82 

2.6 CONFIGURE BSP EDITOR ........................................................................................................................................ 83 

 

 

 

 

 

 



 

1 
-

 

 Chapter 1 

 Hardware Design 
This tutorial provides comprehensive information that will help you understand how to create a 
FPGA based SOPC system implementing on your FPGA development board and run software upon 
it. 

11..11  RReeqquuiirreedd  FFeeaattuurreess  

The Nios II processor core is a soft-core central processing unit that you could program onto an 
Altera field programmable gate array (FPGA). This tutorial illustrates you to the basic flow 
covering hardware creation and software building. You are assumed to have the latest Quartus II 
and NIOS II EDS software installed and quite familiar with the operation of Windows OS. If you 
use a different Quartus II and NIOS II EDS version, there will have some small difference during 
the operation. You are also be assumed to possess a DE-Nano development board (other kinds of 
dev. Board based on Altera FPGA chip also supported). 

The example NIOS II standard hardware system provides the following necessary components: 

 Nios II processor core, that’s where the software will be executed 
 On-chip memory to store and run the software  
 JTAG link for communication between the host computer and target  
 hardware (typically using a USB-BlasterII cable) 
 LED peripheral I/O (PIO), be used as indicators 

11..22  CCrreeaattiioonn  ooff  HHaarrddwwaarree  DDeessiiggnn  

This section describes the flow of how to create a hardware system including SOPC feature. 

1. Launch Quartus II then select File->New Project Wizard, start to create a new project. See 
Figure 1-1 and Figure 1-2. 



 

2 
-

 

 
Figure 1-1 Start to Create a New Project 



 

3 
-

 

 
Figure 1-2 New Project Wizard 

2. Choose a working directory for this project, type project name and top-level entity name as 

shown in Figure 1-3. Then click Next, you will see a window as shown in Figure 1-4. 



 

4 
-

 

 
 

Figure 1-3 Input the working directory, the name of project, top-level design entity 



 

5 
-

 

 
Figure 1-4 New Project Wizard: Add Files [page 2 of 5] 

 

3. Click Next to next window. We choose device family and device settings. You should choose settings 

the same as the Figure 1-5. Then click Next to next window as shown in Figure 1-6. 



 

6 
-

 

 
Figure 1-5 New Project Wizard: Family & Device Settings [page 3 of 5] 



 

7 
-

 

 
Figure 1-6 New Project Wizard: EDA Tool Settings [page 4 of 5] 

4. Click Next and will see a window as shown in Figure 1-7. Figure 1-7 is a summary about     
our new project. Click Finish to finish new project. Figure 1-8 show a new complete project. 

 



 

8 
-

 

 
Figure 1-7 New Project Wizard: Summary [page 5 of 5] 

 



 

9 
-

 

 
Figure 1-8 A New Complete Project 

 

5. Choose Tools > Qsys to open new Qsys system wizard . See Figure 1-9 and Figure 1-10. 



 

10 
-

 

 
Figure 1-9 Qsys Menu 



 

11 
-

 

 

Figure 1-10 Create New Qsys System 

6. Save as the System as shown in Figure 1-11. 



 

12 
-

 

 
Figure 1-11 Save System 

7. Rename System Name as shown in Figure 1-12. Click Save and your will see a window as 
shown in Figure 1-13. 



 

13 
-

 

 
Figure 1-12 Rename System 

 
Figure 1-13 A New System 

8. Click the Name of the Clock Settings table, rename clk_0 to clk_50. Press Enter to complete the 
update. See Figure 1-14. 



 

14 
-

 

 
Figure 1-14 Rename Clock Name 

 

9. Choose Library > Embedded Processors > Nios II Processor to open wizard of adding cpu 

component. See Figure 1-15 and Figure 1-16. 



 

15 
-

 

 
Figure 1-15 Add Nios II Processor 



 

16 
-

 

 
Figure 1-16 Nios II Processor 

 

10. Click Finish to return to main window as shown in Figure 1-17. 



 

17 
-

 

 
Figure 1-17 Add Nios II CPU completely 

 

11. Choose nios2_qsys_0 and right-click then choose rename, after this, you can update nios2_qsys 
_0 to cpu. See Figure 1-18 and Figure 1-19.  



 

18 
-

 

 
Figure 1-18 Rename CPU name (1) 



 

19 
-

 

 
Figure 1-19 Rename CPU Name (2) 

 

11. Connect the clk and clk_reset as shown in Figure 1-20. (clicking the hollow dots on the 
connection line. The dots become solid indicatingthe ports are connected.) 



 

20 
-

 

 
Figure 1-20 Connect the clk and clk_reset 

12. Choose Library > Interface Protocols > Serial > JTAG UART to open wizard of adding JTAG 
UART. See Figure 1-21 and Figure 1-22. 

   



 

21 
-

 

 
Figure 1-21 Add JTAG UART (1) 



 

22 
-

 

 
Figure 1-22 JTAG UART (2) 

 

13. Click Finish to close the wizard and return to the window as shown in Figure 1-. 



 

23 
-

 

 
Figure 1-23 JTAG UART 

 

14. Choose jtag_uart_0 and rename it to jtag_uart as shown in Figure 1-. 



 

24 
-

 

 
Figure 1-24 Rename JTAG UAR 

 

 

15. Connect the clk and clk_reset and data_master as shown in Figure 1-5. 



 

25 
-

 

 
Figure 1-25 Connect JTAG UART 

16. Choose Library > Memories and Memory Controllers > On-Chip > On-Chip Memory (RAM or 
ROM) to open wizard of adding On-Chip memory. See Figure 1- and Figure 1-. 



 

26 
-

 

 
Figure 1-26 Add On-Chip Memory 



 

27 
-

 

 
Figure 1-27 On-Chip Memory Box 

17. Modify Total memory size to 32768 as shown in Figure 1-. Click Finish to return to the window 
as in Figure 1-29. 

 



 

28 
-

 

 
Figure 1-28 Update Total memory size 



 

29 
-

 

 
Figure 1-29Add On-Chip memory Completely 

 

18. Rename onchip_memory2_0 to onchip_memory2 as shown in Figure 1-30. 



 

30 
-

 

 
Figure 1-30 Rename On-Chip memory 

 

19. Connect the clk and clk_reset and data_master as shown in Figure 1-. 



 

31 
-

 

 
Figure 1-31 Connect On-Chip memory 

 

20. Click cpu in the component list on the right part to edit the component. Update Reset vector 
and Exception Vector as shown in Figure 1-32. Then click Finish to return to the window as 
shown Figure 1-33.  



 

32 
-

 

 
Figure 1-32 Update CPU settings 



 

33 
-

 

 
Figure 1-33 Update CPU settings Completely 

 

21. Choose Library > Peripherals > Debug and Performance >System ID Peripheral to open 

wizard of adding System ID. See Figure 1- and Figure 1-. 

 



 

34 
-

 

 
Figure 1-34 Add System ID [0] 



 

35 
-

 

 
Figure 1-35 Add System ID [1] 

 

22. Click Finish to close System ID Peripheral box and return to the window, rename sysid_qsys_0 
to sysid and connect the clk and clk_reset and data_master as shown in Figure 1-. 



 

36 
-

 

 
Figure 1-36 Add System ID [2] 

 

23. Choose Library > Peripherals > Microcontroller Peripherals >PIO (Parallel I/O) to open 
wizard of adding PIO. See Figure 1- and Figure 1-. 



 

37 
-

 

 
Figure 1-37 Add PIO 



 

38 
-

 

 
Figure 1-38 Add PIO 

 

24. Click Finish to close PIO box and return to the window as shown in Figure 1-. 



 

39 
-

 

 
Figure 1-39 PIO 

 

25. Rename pio_0 to pio_led as shown in Figure 1-40. 



 

40 
-

 

 
Figure 1-40 Rename PIO 

 

26. Connect the clk and clk_reset and data_master as shown in Figure 1-. 



 

41 
-

 

Figure 1-41 Connect PIO 

 

27. Export external_connection and Rename it to pio_led_external_connection as shown in Figure 

1-. 



 

42 
-

 

 
Figure 1-42 Export external_connection 

28. Choose System > Assign Base Addresses as shown in Figure 1-43. After that, you will find that 
there is no error in the message window as shown in Figure 1-44. 



 

43 
-

 

 
Figure 1-43 Assign Base Addresses 



 

44 
-

 

 
Figure 1-44 No Errors 

 

29. Assign Interrupt Numbers as shown in Figure 1-45. After that, you will find that there is no 
warings in the message window as shown in Figure 1-46.( In the IRQ column, connect the Nios II 
processor to the JTAG UART) 



 

45 
-

 

 
Figure 1-45 Assign IRQ 



 

46 
-

 

 
Figure 1-46 No Warings 

30. Click Generate tab and click Generate then pop a window as shown in Figure 1-. Click Save 
and the generation start. Figure 1- shows the generate process. If there is no error in the 
generation, the window will show successful as shown in Figure 1-. 



 

47 
-

 

 
Figure 1-47 Generate Qsys 

 

 



 

48 
-

 

 
Figure 1-48 Generate Qsys 

 
Figure 1-49 Generate Qsys Completely 

 

31. Click Close to close the dialog box and exit the Qsys and return to the window as shown in 

Figure 1-. 



 

49 
-

 

 
Figure 1-50 Exit Qsys 

 

32. Choose File > New to open new files wizard. See Figure 1- and Figure 1-. 



 

50 
-

 

 
Figure 1-51 New Verilog file 



 

51 
-

 

 
Figure 1-52 New Verilog File 

 

33. Choose Verilog HDL File and click OK to return to the window as shown in Figure 1-. 
   Figure 1- show a blank verilog file. 



 

52 
-

 

 
Figure 1-53 A blank verilog file 

34. Type verilog the following script as shown in Figure 1-54. The module DE0_NANO_QSYS of 

the code is from DE0_NANO_QSYS.v of the project. See 



 

53 
-

 

 

Figure 1-55 and Figure 1-56. 

 

module myfirst_niosii 

             ( 

                     CLOCK_50, 

                     LED 

              ); 

             input          CLOCK_50; 

             output [7:0]   LED; 



 

54 
-

 

    DE0_NANO_QSYS DE0_NANO_QSYS_inst 

                              ( 

      .clk_50                (CLOCK_50), 

      .out_port_from_the_pio_led  (LED), 

      .reset_n                    (1'b1) 

                                  ); 

                                                                                                       

endmodule

 

Figure 1-54 Input verilog Text 



 

55 
-

 

 
Figure 1-55 Open SoCKit_QSYS.v 



 

56 
-

 

 
Figure 1-56 SoCKit_QSYS module 

 

35. Choose Save Icon in the tool bar. There will appear a window as shown in Figure 1-57. Click 

Save. 



 

57 
-

 

 
Figure 1-57 Save Verilog file 

 

36. Add File in project as shown in Figure 1-58, add DE0_NANO_QSYS.qsys and 
DE0_NANO_QSYS.v to the project as shown in Figure 1-59 and Figure 1-60. it is completed 
as shown in Figure 1-. 



 

58 
-

 

 

Figure 1-58 Add file 

 



 

59 
-

 

 
Figure 1-59 Add file 



 

60 
-

 

 
Figure 1-60 Add file 



 

61 
-

 

 
Figure 1-61 Add file completely 

 

37. Choose Processing > Start Compilation as shown in Figure 1-62. Figure 1-63 shows the 
compilation process. 



 

62 
-

 

 
Figure 1-62 Start Compilation 



 

63 
-

 

 
Figure 1-63 Execute Compilation 

Note: In the compilation, if there is the error which shows “Error: The core supply voltage of ‘1.0v’ 
is illegal for the currently selected part.”, you should modify the text “set_global_assignment -name 
NOMINAL_CORE_SUPPLY_VOLTAGE 1.0V” to “set_global_assignment -name 
NOMINAL_CORE_SUPPLY_VOLTAGE 1.2V”  in the myfirst_niosii.qsf of the project. 

 

38. A window that shows successfully will appear as shown in Figure 1-64. 



 

64 
-

 

 
Figure 1-64 Compilation project completely 

 

39. Choose Assignments > Pins to open pin planner as shown in Figure 1-65. Figure 1-66 show 
blank pins. 



 

65 
-

 

 
Figure 1-65 Pins menu 



 

66 
-

 

 
Figure 1-66 Blank Pins 

 

40. Input Location value as shown in Figure 1-67. 



 

67 
-

 

 
Figure 1-67 Set Pins 

 

41. Close the pin planner. Restart compilation the project as shown in Figure 1-68. 



 

68 
-

 

 
Figure 1-68 Compilation project again 

 

11..33  DDoowwnnllooaadd  HHaarrddwwaarree  DDeessiiggnn  ttoo  TTaarrggeett  FFPPGGAA  

This section describes how to download the configuration file to the board. 

Download the FPGA configuration file (i.e. the SRAM Object File (.sof) that contains the NIOS II 
standard system) to the board by performing the following steps: 

1. Connect the board to the host computer via the USB download cable. 

2. Apply power to the board. 

3. Start the Nios II Software Build Tools (SBT) for Eclipse. 



 

69 
-

 

4. After the welcome page appears, click Workbench. 

5. Choose Nios II->Quartus II Programmer. 

6. Click Auto Detect. The device on your development board should be detected automatically. 

7. Click the top row to highlight it. 

8. Click Change File. 

9. Browse to the My_First_NiosII project directory. 

10. Select the programming file (myfirst_niosii.sof) for your board. 

11. Click OK. 

12. Click Hardware Setup in the top, left comer of the Quartus II programmer window. The 
Hardware Setup dialog box appears. 

13. Select USB-BlasterII from the Currently selected hardware drop-down list box. 

   Note: If the appropriate download cable does not appear in the list, you must first install drivers 
for the cable. Refer to Quartus II Help for information on how to install the driver. See Figure 
1-69. 

 
Figure 1-69 Hardware Setup Window 

 



 

70 
-

 

 

 

14. Click Close. 

15. Turn on the Program/Configure option for the programming file.(See Figure 1-70 for an 
example). 

16. Click Start. 

 
Figure 1-70 Quartus II Programmer 

The Progress meter sweeps to 100% after the configuration finished. When configuration is 
complete, the FPGA is configured with the Nios II system, but it does not yet have a C program in 
memory to execute. 



 

71 
-

 

Chapter 2  

 NIOS II Softwar     

Build Tools for Eclipse 
 

This Chapter covers build flow of Nios II C coded software program.  

The Nios II Software Build Tools (SBT) for Eclipse is an easy-to-use graphical user interface (GUI) 
that automates build and makefile management. The Nios II SBT for Eclipse integrates a text editor, 
debugger, ,the BSP editor ,the Nios II flash programmer and the Quartus II Programmer. The 
included example software application templates make it easy for new software programmers to get 
started quickly. In this section you will use the Nios II SBT for Eclipse to compile a simple C 
language example software program to run on the Nios II standard system configured onto the 
FPGA on your development board. You will create a new software project, build it, and run it on the 
target hardware. You will also edit the project, re-build it, and set up a debug session. 

22..11    CCrreeaattee  tthhee  hheelllloo__wwoorrlldd  EExxaammppllee  PPrroojjeecctt  

In this section you will create a new NIOS II C/C++ application project based on an installed 
example. To begin, perform the following steps in the NIOS II SBT for Eclipse: 

1. Return to the NIOS II Software Build Tools for Eclipse. 

Note: you can close the Quartus II Programmer or leave it open in the background if you want to 
reload the processor system onto your development board quickly. 

2. Choose File > Switch Workspace to switch workspace. See Figure 2-1 and Figure 2-2. 



 

72 
-

 

 

Figure 2-1 Switch Workspace (1) 

 



 

73 
-

 

Figure 2-2 Switch Workspace (2) 

 

3. Choose File->New->NIOS II Application and BSP from Template open the New Project Wizard. 

4. In the New Project wizard, make sure the following things: 

● Under Target hardware information, next to SOPC Information File name, browse to locate the 
<design files directory> where the previously created hardware project resides as shown in 
Figure 2-3. 

● Select DE0_NANO_QSYS.sopcinfo and click Open. You return to the Nios II Application and 
BSP from Template wizard showing current information for the SOPC Information File name and 
CPU name fields. 

● Select the Hello World project template. 

● Give the project a name. (hello_world_0 is default name),there we rename it to hello_world_0.  



 

74 
-

 

 
Figure 2-3 Nios II-Ecplise New Project Wizard 

 

5. Click Finish. The NIOS II SBT for Eclipse creates the hello_world_0 project and returns to the 

Nios II C/C++ project perspective. See Figure 2-4. 



 

75 
-

 

 
Figure 2-4 Ecplise Project Perspective for hello_world_0 

When you create a new project, the NIOS II SBT for Eclipse creates two new projects in the NIOS 
II C/C++ Projects tab: 

■ hello_world_0  (hello_world_0 is default name) is your C/C++ application project. This project 
contains the source and header files for your application.  

■hello_world_0 _bsp (hello_world_0_bsp is default name) is a board support package that 
encapsulates the details of theNios II system hardware. 

Note:When you build the system library for the first time the NIOS II SBT for Eclipse 
automatically generates files useful for software development, including: 

● Installed IP device drivers, including SOPC component device drivers for the NIOS II hardware 
system 

● Newlib C library, which is a richly featured C library for the NIOS II processor. 



 

76 
-

 

● NIOS software packages which includes NIOS II hardware abstraction layer, NicheStack TCP/IP 
Network stack, NIOS II host file system, NIOS II read-only zip file system and Micrium’s 
μC/OS-II real time operating system(RTOS). 

● system.h, which is a header file that encapsulates your hardware system. 

● alt_sys_init.c, which is an initialization file that initializes the devices in the system. 

● Hello_world_0.elf, which is an executable and linked format file for the application located in 
hello_world_0 folder under Debug. 

22..22    BBuuiilldd  aanndd  RRuunn  tthhee  PPrrooggrraamm  

In this section you will build and run the program to execute the compiled code. 

To build the program, right-click the hello_world_0 project in the Nios II C/C++ Projects tab and 
choose Build Project. The Build Project dialog box appears and the Eclipse begins compiling the 
project. When compilation completes, a message ‘[myfirst_niosii  build complete]’ will appear in 
the Console tab. The compilation time varies depending on your system. See Figure 2-5 for an 
example. 



 

77 
-

 

 
Figure 2-5 hello_world_0 Build Completed 

After compilation complete, right-click the hello_world_0 project, choose Run As, and chooseNIOS 
II Hardware. The Eclipse begins to download the program to the target FPGA developmentboard 
and begins execution. When the target hardware begins executing the program, the message ’Hello 
from Nios II!’ appears in the NIOS II SBT for Eclipse Console tab. See Figure 2-6 for an example. 



 

78 
-

 

 
Figure 2-6 hello_world_0 Program Output 

Now you have created, compiled, and run your first software program based on NIOS II. And you 
can perform additional operations such as configuring the system properties, editing and re-building 
the application, and debugging the source code. 

22..33    EEddiitt  aanndd  RRee--RRuunn  tthhee  PPrrooggrraamm  

You can modify the hello_world.c program file in the Eclipse, build it, and re-run the program to 
observe your changes executing on the target board. In this section you will add code that will make 
LED blink. 

Perform the following steps to modify and re-run the program: 

1. In the hello_world.c file, add the text shown in blue in the example below: 

#include <stdio.h> 



 

79 
-

 

#include "system.h" 

#include "altera_avalon_pio_regs.h" 

int main() 

{ 

    printf("Hello from Nios II!\n"); 

    int count = 0; 

    int delay; 

    while(1) 

    { 

        IOWR_ALTERA_AVALON_PIO_DATA(LED_BASE, count & 0x01); 

        delay = 0; 

        while(delay < 1000000) 

        { 

            delay++; 



 

80 
-

 

        } 

        count++; 

    } 

    return 0; 

} 

2. Save the project. 

3. Recompile the file by right-clicking hello_world_0 in the NIOS II C/C++ Projects tab and 
choosing Run > Run As > Nios II Hardware. 

Note: You do not need to build the project manually; the NIOS II SBT for Eclipse automatically 
re-builds the program before downloading it to the FPGA. 

4. Orient your development board so that you can observe LED blinking. 

 

22..44    WWhhyy  tthhee  LLEEDD  BBlliinnkkss  

The Nios II system description header file, system.h, contains the software definitions, name, 
locations, base addresses, and settings for all of the components in the Nios II hardware system. The 
system.h file is located in the in the hello_world_0 _bsp directory as shown in Figure 2-7. 



 

81 
-

 

 
Figure 2-7 System.h Location 

If you look at the system.h file for the Nios II project example used in this tutorial, you will notice 
the led function. This function controls the LED. The Nios II processor controls the PIO ports (and 
thereby the LED) by reading and writing to the register map. For the PIO, there are four registers: 
data, direction, interrupt mask, and edge capture. To turn the LED on and off, the application writes 
to the PIO data register.  

The PIO core has an associated software file altera_avalon_pio_regs.h. This file defines the core’s 
register map, providing symbolic constants to access the low-level hardware.  

The altera_avalon_pio_regs.h  

file is located in altera\<version number>\ip\sopc_builder_ip\altera_avalon_pio. 

When you include the altera_avalon_pio_regs.h file, several useful functions that manipulate the 
PIO core registers are available to your program. In particular, the function  

IOWR_ALTERA_AVALON_PIO_DATA (base, data)  



 

82 
-

 

can write to the PIO data register, turning the LED on and off. The PIO is just one of many SOPC 
peripherals that you can use in a system. To learn about the PIO core and other embedded peripheral 
cores, refer to Quartus II Version <version> Handbook Volume 5: Embedded Peripherals. 

When developing your own designs, you can use the software functions and resources that are 
provided with the Nios II HAL. Refer to the Nios II Software Developer’s Handbook for extensive 
documentation on developing your own Nios II processor-based software applications. 

22..55    DDeebbuuggggiinngg  tthhee  AApppplliiccaattiioonn  

Before you can debug a project in the NIOS II SBT for Eclipse, you need to create a debug 
configuration that specifies how to run the software. To set up a debug configuration, perform the 
following steps: 

1. In the hello_world.c, double-click the front of the line which is needed to set breakpoint. See 
Figure 2-8. 

 
Figure 2-8 Set Breakpoint 



 

83 
-

 

2. To debug your application, right-click the application (hello_world_0 by default) and choose 
Debug as > Nios II Hardware. 

3. If the Confirm Perspective Switch message box appears, click Yes. 

4. After a moment, the main () function appears in the editor. A blue arrow next to the first line of 
code indicates that execution stopped at that line. 

5. Choose Run-> Resume to resume execution. 

When debugging a project in the Nios II SBT for Eclipse, you can pause, stop or single step the 
program, set breakpoints, examine variables, and perform many other common debugging tasks. 

Note: To return to the Nios II C/C++ project perspective from the debug perspective, click the two 
arrows >> in the top right corner of the GUI. 

 

22..66    CCoonnffiigguurree  BBSSPP  EEddiittoorr  

In this section you will learn how to configure some advanced options about the target memory or 
other things. By performing the following steps, you can charge all the available settings: 

1. In the Nios II SBT for Eclipse, right-click hello_world_0_bsp and choose Nios II-> BSP Editor. 
The BSP Editor dialog box opens. 

2. The Main page contains settings related to how the program interacts with the underlying 
hardware. The settings have names that correspond to the targeted NIOS II hardware. 

3. In the Linker Script box, observe which memory has been assigned for Program memory(.text), 
Read-only data memory(.rodata), Read/write data memory(.rwdata), Heap memory, and Stack 
memory, see Figure 2-9. These settings determine which memory is used to store the compiled 
executable program when the example My_First_NiosII programs runs. You can also specify 
which interface you want to use for stdio , stdin, and stderr. You can also add and configure an 
RTOS for your application and configure build options to support C++, reduced device drivers, 
etc. 

4. Choose onchip_memory2 for all the memory options in the Linker Script box. See Figure 2-9 for 
an example. 



 

84 
-

 

 
Figure 2-9 Configuring BSP 

5. Click Exit to close the BSP Editor dialog box and return to the Eclipse workbench. 

Note: If you make changes to the system properties or the Qsys properties or your hardware, you 
must rebuild your project. To rebuild, right-click the hello_world_0_BSP->Nios 
II->Generate BSP and then Rebuild Project. 

 


