
Physics 623: HW 7

1) For the below positive feedback circuit, let's assume that the open loop amplifier gain A saturates as the input voltage is increased with the following functional dependence: $A = -A_{SS} \left(1 - |V|/V_{SAT} \right)$.

Here A_{SS} is the small signal gain, V is the *output* voltage, and V_{SAT} is called the saturation voltage (for a real op-amp, the open-loop gain will decrease somewhat at large output amplitudes, although not necessarily with this functional form).

Note that A is negative. That is, the feedback goes to the inverting input of the amplifier. Assume $\beta = \left(1/\left(1+i\frac{f}{f_c}\right)\right)^4$ (this is a four-pole low-pass filter, where each pole has a corner frequency f_c).

- a) What is the minimum value of A_{SS} such that oscillation will occur?
- b) What will be the amplitude of the steady-state output voltage?
- c) Assume $A_{\rm SS}$ = 100 and $V_{\rm SAT}$ = 10 V, and f_c = 100 Hz.
 - i. Will the circuit oscillate?
 - ii. At what frequency will oscillation occur?
 - iii. Will it be an undistorted sine wave? Why or why not? (No calculations expected this would be a job for a computer, or someone willing to do a lot of complex algebra.)

