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20 Differential Equations and Their Solutions

1.1 that Problem (B) has a solution. We are not saying that it does not have one. Theorem
1.1 simply gives no information one way or the other.

Exercises v
1. Show that y = 4e?* + 2¢73* is a solution of the itxitiial-value problem
dly | dy
—— 4 =—6y=0
22t
»0) =6
- A y(0) = 2.

: >
Is y = 2e?* 4 473 also a solution of this problem? Explain why or why not.

2. Given that the general solution of 3—:‘ 4+ y = 2xe™* may be written y = (x2 4 c)e™*, solve the

following initial-value problems:

A ¥ e BT,
dx-_i—y _2xe dx+y 42xe

Wy=2 . H=1) =e+3.

3. Given that the general solution of Z% - :—i — 12y = 0 may be written y = c1e** + c2¢73%,

solve the follosyiﬁg initial-value problems:

A |y _dy _ ., _ ® (% _& _ 1,
a0 T =0
y0) =5 Y0 = =2

y'(0) = 6. _ y'(0 = 6.

4. The general sol_ution of the differential equation Z% + y = 0 may be written in the form

¥ = cisinx + cacosx. Using this information, show 'that" boundary problems. (A) and (B) below
possess solutions but that Problem (C) does not.

@@, _o ®[®, _, (© &, _
+y=0 dx2+y 0 dx2+y 0

dx2
y0) =0 y0) =1 %0) = 0
Wx/2) =1, Y(w/2) = —1, ¥m) = 1.
5. Given that the general solution of '
a3y dzy dy _
x’Es - 3X2E2 + 6XE bt 6y = 0

may be written y = c1x + c2x2 + c¢3x3, solve the initial-value problem consisting of the above
differential equation plus the three conditions

y2=0, yQ@=2 3y =6.

6. Apply Theorem 1.1 to show that each of the following initial-value problems has a unique
solution defined on some sufficiently small interval |x — 1| < & about xo = 1.
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W (¥ _ oy ® 2
: de x-—2

D) = —2. (1) = 0.

7. Consider the initial-value problem
dy
—= = P(x)y?
, (x)y* + Q(x)yv

y(2) =35,

wheré P(x) and Q(x) are both third degree polynomials in x. Has this problem a unique solution on

some interval |x — 2| < h about xo = 2? Explain why or why not.
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FIRST-ORDER EQUATIONS FOR WHICH
EXACT SOLUTIONS ARE OBTAINABLE

In this chapter we consider certain basic types of first-order equations for which exact
solutions may be obtained by definite procedures.- The purpose of this chapter is to
gain ability to recognize these various types and to apply the corresponding methods of
solutions. Of the types considered here, the so-called exact equations considered in
Section 2.1 are in a sense the most basic, while the separable equations of Section 2.2
are in a sense the ‘“‘easiest.” The most important, from the point of view of applications,
are the separable equations of Section 2.2 and the linear equations of Section 2.3. The
remaining types are of various very special forms, and the corresponding methods of
solution involve various devices. In short, we might describe this chapter as a.collection
of special “‘methods,” “devices,” “tricks,” or “recipes,” in descending order of kindness!

2.1 Exact Differential Equations and Integrating Factors

A. Standard Forms of First-Order Differential Equations .
The first-ordér differential equations to be studxcd in this chapter may be expressed in
either the form

| B dy _
@.1) 7 = fx)
or the form o
(22) M(x,p)dx + N(x,y)dy = 0.

An equation in one of these forms may readily be written in the other form. For
example, the equation _ _
dy _x2+»?
dx x-—y
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is of the form (2.1). It may be written
(x2 4 y9dx + (y — x)dy = 0,
which is of the form (2.2), The equation
(sinx + y)dx + (x + 3y)dy = 0,
which is of the form (2.2), may be written in the form (2.1) as

dy _ _sinxty
dx  x+3y

B. Exact Differential Equations

DEFINITION. Suppose u# = F(x,y), where F has continuous first partial derivatives.
The total differential du is defined by the formula ‘

ou ou
du = 5’—cdx + 5;dy
Example 2.1. Let u be given in terms of x and y by
u = xy2 4 2x3y

for all real (x,y). Then

9u _ 2y ?_‘f_ 3
3% =7 + 6x2y, ay—2xy+2x,

and the total differential du is déﬁned by
Cdu = (2 + 6x2y)dx + (2xy + 2x3)dy.
DEFINITION. "The expression
(2.3) 7 Mdx + Ndy

is called an exact differential if there exists some u for which this expression is the total ‘
differential du. In other words, the expression«(2.3) is an exact differential if there exists
some u such that :

‘au u
3§—M and a—}—,—N.

If Mdx + Ndy is an exact differential, then the differential equation
' Mdx + Ndy = 0 '
is called an exact differential equation.
Example 2.2. The differential eqﬁation
(2.4) yidx + 2xydy = 0 _
is an exact differential equation, for the expression y2dx + 2xydy is_ém exact differential.

Indeed, it is the total differential of u, where u = xy?, since the coefficient of dx is g—; = y?

and that of dy isg—; = 2xy. On the other hand, the more simple appez;ring equation
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.5 ydx + 2xdy = 0,

obtained from (2.4) by dividing through by y, is not exact.

~ In Example 2.2 we stated without hesitation that the differential equation (2.4) is
exact but the differential equation (2.5) is not.. In the case of the equation (2.4) we verified

our assertion by actually exhibiting the function u of which the expression y2dx + 2xydy

is the total differential. But in the case of equation (2.5), we did not back up our state-

ment by showing that there is no u such that ydx + 2xdy is its total differential. It is

clear that we need a simple test to determine whether or not a given differential equation
is exact. This is given by the following theorem.

THEOREM 2.1. Consider the differential equation
(2.6) " Mdx + Ndy =0,
‘where M and N have continuous first partial derivatives.

(1) ¥ the differential equation (2.6) is exact,

then =
N aM _ 3N
2.7 | 3 - 5
(2) Conversely, if
oM _ aN
ay  ox

then the differential equation (2.6) is exact.

Proof. Partl. If the differential equation (2.6) is exact, then Mdx + Ndy is an exact
. differential. By definition of an exact differential, there exists a u such that

‘ou du

Fyvie M and 5 = N.
Then
.—azu = .ai.l and __._aZu p— a_l.
aydx - ay axdy  ox

But, using the continuity of the first partial derivatives of M and N, we have

u - 02u

aydx  axady
and therefore

M _ N

gy odx

Part 2. This being the converse of Part 1, we start with the hypothesis that

oM _ N
ay ax
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and set out to show that Mdx 4+ Ndy = 0 is exact. This means that we must prove that
there exists a « such that’

du
(2.8) Ix = M
and

ou
(2.9) 5 = N.

We can certainly find some u satisfying either (2.8) or (2.9), but what about both? Let
us assume that u satisfies (2.8) and proceed.
Then

(2.10) = [ Max + ¢(3),

where fMax indicates a “‘partial integration” with respect to x, holding y constant, and
¢ is an arbitrary function of y ongg (this corresponds to a ‘“‘constant of integration’).
lefercntlatmg (2.10) partially with rcspect to y, we obtain

¢.
5; ay/Ma +3

Now if (2.9) is to be satisfied, we must have
@.11) N—v—/Max+d¢

and hence

Since ¢ is a function of y only, the derivative ‘;— must also be independent of x. That is,.

in order for (2.11) to hold,
s .
(2.12) N - 5}-’/M8x

must be independent of x. Since

aN AN M
[N——/Ma] ax é)xay[Ma axv_ 6yax/Ma ax—F;—O

(since %l = 66_1)\: by hypothesis), we thus see that (2.12) is independent of x.

o[- ol

Thus we may write
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Substituting this into Equation (2.10), we have

e e [t [ [ [

" This u thus satisfies both (2.8) and (2.9), and so Mdx + Ndy = 0 is exact. Q.E.D.

‘Students well-versed in the terminology of higher mathematics will recognize that
Theorem 2.1 may be stated in the following words: “A necessary and sufficient condition
that equation (2.6) be exact is that condition (2.7) hold.” For students not so well-versed,
let us simply emphasize that condmon (2.7), 661;{ = %: is the criterion for exactness.

If (2.7) holds, then (2.6) is exact: if (2.7) does not hold, then (2.6) is not exact.

Example 2.3. We apply the exactness criterion (2. 7) to the Equatlons (2.4) and (2.5)
introduced in Example 2. 2 For the equation

2% - y2dx + 2xydy = 0
we have M = y2, N = 2xy, and%l =2y = %\: Thus the Equation (2.4) is exact.

On the other hand, for the equation
(2.5) ydx + 2xdy = 0,

we have M = y, N = 2x, and —1,‘1’1 =]1®2= %A—, Thus the Equatlon (2.5) is not exact.’

Example 2.4. Consider the differential equation : >
(2xsiny + y3e*)dx + (x2cosy + 3y2ex)dy = 0.
Here
M = 2xsiny + ylex,
N = x%cosy + 3y2ex
& N

oM
R e 2pox — .
o 3y 2xcosy + 3y2e £

Thus this differential equation is exact.

C. The Solution of Exact Differential Equations

Now that we have a test with which to determine exactness, let us proceed to solve
exact differential equations. If the equation Mdx + Ndy = 0 is exact, then there exists

some u such that % = M and % =-N. Then the equation may be written
2l—‘dx + a—udy =0  orsimply du = 0.

The relation u = ¢ is obviously a solution of this, where c is an arbitrary constant. ‘We
summarize this observation in the following theorem.
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THEOREM 2.2. The general solution of the exact differential equation Mdx 4+ Ndy = 0

is given by u = ¢, where u is such that ou _ M and du

u . . '
7% i N, and c is an arbitrary con-

stant.

Referring to Theorem 2.1, we observe that u is given by formula (2.13). However,
in solving exact differential equations it is neither necessary nor desirable to use this
formula. Instead one obtains u either by proceeding as in the proof of Theorem 2.1,
Part 2, or by the so-called “method of grouping,” which will be explained in the following
examples.

Example 2.5. (3x2 + 4xy)dx + (2x2 + 2y)dy = 0.
Our first duty is to determine whethér or not the equation is exact. Here M = 3x2 + 4xy

and N = 2x2 + 2y, %l = 4x and %1—;, = 4x, and so the equation is exact. Thus we must

find u such that z—:: = M = 3x2 + 4xy and ‘;—; = N = 2x2 4 2y. From the first of

these,
w=[Mox+ o) = [(x2 + 4x)ax + 60) = 2 + 22 + 40
Then )
W _ 5y 90
i 2x2 + dy
But we must have g—'—; = N=2x242y.
Thus
2x2+2y=2x2+-d£
dy
or
dg _
- o=

Thus ¢(y) = y2 + co, where co is an arbitrary constant, and so
u = x3 + 2x2y + y2 + co.
The general solution is u = ¢y or ' |
| x3 4+ 2x%y + y2 + co = c1.
Absorbing together the nonessential constants co and ¢, we may write our solution as
x3 4+ 2x2y 4+ 3?2 = ¢,

where ¢ = ¢1 — co is an arbitrary constant. ‘ _
The student will observe that there is no loss in generality by taking co = 0 and writing
#(y) = y2. We now consider an alternate procedure. :

2
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Method of Gr,ouping;, We shall now solve the differential equation of this example by
grouping the terms in such a way that its left member appears as the sum of certain
exact differentials. We write the differential equation

(3x2 4+ 4xy)dx + (2x2 4+ 2y)dy = 0
in the form
3x2dx + (dxydx + 2x2dy) + 2ydy = 0.
We now recognize this as o
d(x%) + d(2x%y) + d(y?) = d(c),

where c is an arbitrary constant, or

d(x3 + 2x2y + y2) = d(c).
From this we have at once :
x4+ 2x%y +y2 =c. v
Clearly this procedure is much quicker, but it requires a good “working knowledge” of-
differentials and a certain amount of ingenuity to determine just how the terms should
be grouped. The standard method may require more “work™ and take longer, but it

is perfectly straightforward. It is recommended for those who like to follow a pattern
and for those who have a tendency to jump at conclusions.

Just to make certain that we have both procedures well in hand, we shall consider an

initial-value problem involving an exact differential equation.

Example 2.6. Solve the initia]-value problem
- (2xcosy + 3x2y)dx + (x3 — x2Zsiny — p)dy = 0,

, ¥(0) = 2.
We first observe that the equation is exact:
oM . ,_ ON
_67 = —2xsiny + 3x = 3x
“Standard” Method. We must find u such that
du ' :
Mo M= 2
I M = 2xcosy + 3x2y
and '
du N=x3—- x2siny'— y.
. dy _ :
Then
: u= f Mox + ¢(y)
= j (2xcosy + 3x2p)ax + ¢(»)
= x2cosy + x3y + ¢(»);
ou

—_— = _-xZSiny + x3 + Z_%
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But also

du .

3y N=x x2siny — y
and so

dé _

@ =)
and hence

2
$0) = —% +

Thus

' 2
u = x¥osy + x3y — }—)2— + co,

and the general solution u = c1 may be written

y2
x2cosy + x3y — T =c

Applying the initial condition y = 2 when x = 0, we find ¢ = —2. Thus the solution
of the given initial-value problem is

y2
x2cosy + x3y - 5 = -2,

“Method of Grouping.” We gfoup the terms as follows:
(2xcosydx — x2sinydy) + (3x2ydx + x3dy) — ydy = 0.

Thus we have ‘
2\
d(x2cosy) + dx3y) — d(%—) = d(o);

and so

. ) y2 o
x2cosy + x3y — 5 =c

is the general solution of the differential equation. Of course the initial condition y(0) =
again yields the particular solution already obtained. :

D. Integrating Factors
Given the differential equation

Mdx + Ndy = 0,

if — oM ﬂ, then the equation is exact and we can obtain its solution by one of the

ay ox
procedures explained above. But if aj;l = 6N,

above procedures do not apply. What shall we do in such a case? Perhaps we can

then the equatnon is not exact and the
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" multiply the nonexact equation by some expression. which will transform it into an
equivalent exact equation. If so, we can proceed to solve the resulting exact equation
by one of the above procedures. Let-us consider again the equation

(2.5) , ydx + 2xdy = 0

which was introduced in Example 2.2. In that example we observed that this equation
is not exact. However, if we multiply it by y it is transformed into the equivalent equation

(2.9 yudx + 2xydy = 0,

') which, as we observed in Example 2.2, is exact. Since the resulting equation (2.4) (being
exact) is integrable, we call y an integrafing factor of the equation (2.5). In general, we
have the following definition: *

)

DEFINITION. Suppose that the differential cquation

(2.14) Mdx + Ndy =0
is not exact but that the dxfferentxal equation
2. 15) _ uMdx + uNdy = 0

is exact, where u = F(x,y) for a suitably chosen function F. Then u is called an integrating
Sfactor of the differential equation (2.14).
Example 2.7. Consider the differential equation
(2.16) : By + 4xy?dx + (2x + 3x2y)dy = 0.
This equation is of the form (2.14), where M = 3y + 4xy?,

N = 2x + 3x2y, ‘%{ = 3 4 8xy, and % = 2 + 6xy.

Since (3;;! # —'—-) Equation (2.16) is not exact.

 Let u = x2y. Then the corresponding differential equation of the form (2.15) is
(3x2p2 + 4x3p3dx + (2x3y + 3x*y?)dy = 0. '

‘This equation is exact, since
M)
oy
Hence ¢ = x2y is an integrating factor of Equation (2.16)_.

= 6x2y + 12x3y2 = a(" M),

The question now arises: How is an integrating factor found? We shall not attempt

to answer this question at this time. Instead we shall proceed to a study of the im-

portant classes of separable equations in Section 2.2 and linear equations in Section 2.3.

We shall see that the former type always possess integrating factors which are perfectly

~ obvious, while the latter-always has.integrating factors of a certain special form. We

shall return to the question raised above in Section 2.4. Our object here has been merely
to introduce the concept of an integrating factor.



