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(b) (x2y2 + xy~)dx + N(x,y)dy = 0.
17. -‘Cohsider the differential equation , _
(4x + 3y%)dx + 2xydy = 0.

(a) Show that this equation is not exact.

(b) Find an integrating factor of the form x*, where n'is a positive mteger

(c) Multiply the given equation through by the integrating factor found in (b) and solve the
resulting exact equation.

18. Consider a differential equation of the form
b+ XI(x2 + y)dx + [}’f(x2 +) - XId.v = 0.

(a) Show that an equation of this form is not exact.
(b) Show that 1/(x2 4+ y2) is an integrating factor of an equation of thxs form.

19. Use the result of Exercise 18(b) to solve the equation
Iy + *(x2 + y)2dx + x? + )2 = xldy = 0.

22 Separgbljé Equations and Equations Reducible to This Form
A. Sepérable Equations |

DEFINITION. An equatlon of the form
- 2.17) - F)Gx + f (X)g(y)dy =0

is called an equatton with variables separable or sxmply a separable equation.

For example, the equation (x3 + x2)ydx -+ x2(y3 + 2y)dy = Ois a separable equation.

In general the separable equation (2.17) .is not exact, but it possesses an obvious
integrating factor, namely 1/f(x)G(y). For if we multiply Equation (2.17) by this ex-
pression, we separate the variables, reducing (2.17) to the equivalent equation

F(x)
Sx)

A[F@) £0)
5] =0- 5 60 &)
Denoting F(x)/f(x) by M(x) and g(3)/G(») by N(), Equation (2.18) takes the form

M(x)dx + N(»)dy = 0. Since M is a function of x only and N is a function of y only,
we see at once that the solution is

@ [M@ax + [No)y =,

(2.18) FO) e + 80, — o,

GO)

This equation is exact, since

where ¢ is an arbitrary constant. Thus the problem of solving the separable equation
(2.17) has reduced to that of performing the integrations indicated in Equation (2.19). .
It is in this sense that separable equations are the simplest first-order differential equations.
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Example 2.8. (x3 4+ x2)ydx + }c2(y3 + 2y)dy = 0. Separating the variables by divid-
ing by x2y we obtain :

3 2 3
e = R

or

i
<

(x + Ddx + (y2 + 2)dy
From this we have
[u+na+/w+a@=c

or

x2 ¥ -

3 +x.+'3 +2y=c
Observe that in separating the variables we divided by x2y. We did this under the tacit
assumption that neither x nor y is zero. Since our purpose here is to gain facility in

solving separable equations, we shall. always make the assumption that any factors by
which we divide are not zero.

Example 2.9. Solve the initial-value problem which consists of the differential
equation

(2.20) xsinydx + (x2 + 1) cosydy = 0
and the initial condition

(2:21) _ w1 =3

We first obtain the general solution’ of the differential equation (2.20). Separatmg
the varlablcs by d1v1d1ng by (x2 4+ 1) smy, we obtain

ld +cosyd =0.

x2 + siny

xdx cosy
/x?— + 1 +/smydy
where co is an arbitrary constant.
Carrying out the integrations, we find
(2.22) 1In(x2 + 1) + In [siny| = cq.
We could leave the general solution in this form, but we-can put it in a neafer form in the
following way. Since each term~of the left member of this equation involves the log-

arithm of a function, it would seem reasonable that something might be accomplished by
writing the arbitrary constant co in the form In |¢;]. This we do, obtaining.

$In(x2+1)+1In [smyl = In |e1].

Thus
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Multiplying by 2, we have
In(x2 + 1) 4 21n [siny] = 21n [ei].

Since

2 In [siny| = In (siny)?,
and

2Injel =1In él = In ||,

where
| el = ¢},
we now have i . '
In(x2+ 1)+ Insin?y = In lel.
Sinceln 4 + In B = 1n 4B, this equation may be written
' In (x2 4 1) sin2y = In |c|.
From this we have at once _
(2.23) (x2 + 1) sin?2y = c.
Clearly (2.23) is of a neater form than (2.22). l
We now apply the initial condition (2.21) to the general solution (2.23). We have
(1241 sin27§r =c

and so ¢ = 2. Therefore the solution of the initial-value problem under consideration is-
(x2 + 1) sinZy = 2.
B. Homogeneous Equations

We now consider a class of differential equations which can be reduced to separable
equations by a change of variables.

DEFINITION. The first-order differential equation Mdx + Ndy = 0 is said to be

homogeneous if, when written in the form % = f(x,y), there exists g such that f(x,y)
can be expressed in the form g(£>

Example 2.10. The differential equation (x2 — 3y2)dx + 2xydy = 0 is homogeneous.
To see this, we first write this equation in the form

dy _ 3y — x2
dx 2xy

E;ﬁ_ﬁ_i=%§_lj_
2xp  2x 2y 2\x 20079 [

we see that the differential equation under consideration may be written as

%-30)-em)

Now observing that
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" in which the right member is of the form g(—i) for a certain g.

Example 2.11. The equation

(y+\{x2+y2)dx—xdy— 0
is homogeneous. When written in the form

dy _y+\NZF)
dx x ’

the right member may be expressed as

AR

or z + 4 ’1 + ( ) ’ dependihg on the _sign of x. This is obviously of the form g(‘;—:) s

Before proceeding to the actual solution of homogeneous equations we shall consider
a slightly different procedure for recognizing such equations. A function F is called .
homogeneous of degree n if F(tx,ty) = "F(x,y). This means that if £x and y are substituted
for x and y, respectively, in F(x,y), and if # is then factored out, the other factor which
remains is the ongmal expression F(x,y) itself. For example, the function F given by
F(x,y) = x24y2is homogeneous of degree 2 since F(tx,ty) = (tx)? + ()2 = 2(x2 +
y?) = PF(x)). :

Now suppose the functions M and N in the differential equation Mdx +. Ndy =0
are both homogeneous of the same degree n. Then since M(tx,ty) = "M(x,y), we have

M(l,ﬁ) ="M( ) ( )M(x,y), and, in like manmer, N(l ) = (’l—‘)nN(x,y)'. '

Now writing the dxﬁ'erentlal equatlon Midx 4 Ndy 0in the form '

dy M (x,y)
dx N (x,y) T

J

we find - o : _ o~ ' : )
RO 0 C R
511= ‘,x. ,<;‘T - . o
ORI G
Clearly the expression on the nght is of the form g(y/x), and so the eguatlon Mdx + Ndy
= 0 is homogeneous in the sense of the original definition of homogeneity. Thus we
conclude that if M and N in Mdx + Ndy = 0 are both homogeneous functions of the
same degree n, then the differential equation is a homogeneous differential equation..
Let us now look back at Examples 2.10 and 2.11 in thislight. In Example 2. 10, M = x2
— 3y2and N = 2xy. Both M and N are homogeneous of degree 2. Thus we know at .
once that the equation (x2 — 3y?)dx -+ 2xydy = 0 is'a homogeneous equation. In-
Example 2.11, M = y + A/x2 + yZand N = —x. Clearly N is homogeneous of degree 1.
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Since ' .
Mx,y) = ty + V@2 + @)2 = 10 + V2 + 52) = t1M(x.y),

we see that M is also homogeneous of degree 1. Thus we conclude that the cquafion

(y + \x2 + y2)dx — xdy = 0

is indeed homogeneous.
We now show that every homogeneous equation can bc reduced to a separable equation

_ by proving the following theorem.

THEOREM 2.3.4 If
(2.24) . : Mdx + Ndy =0
- is a homogeneous equation, then the change of variables y = vx transforms (2.24)- into

‘a separable equation in the variables v and x.

Proof. Since Mdx + Ndy. = 0 is homogeneous, it may be written in the form

@ _ (2}

dx_g(x)

Let y = vx. Then

, &
d—x‘v+xd

and (2.24) becomes
dv
vt oxge = g(v)
or
[v — g(ldx + xdv = 0.
This equation is separable. Separating the variables we obtain

dv

wtEe

(2.25)
Q.E.D.

Thus to solve a homogeneous differential equation of the form (2. 24), we let y = vx
" and transform the homogeneous equation into a separable equation of the form (2.25).

From this, we have
/ v—g(» +/

‘where ¢ is an arbitrary constant. Letting F(v) denote / " _d;('v) and returning to the

original dependent variable y, the solution takes the form

F(i—;) +Injx] =c.
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Example 2.12. Solve the equation
(x2 = 3y)dx + 2xpdy = 0.

We have already observed that this equation is homogeneous. Writing it in the form

dy _ _x 3y
dx +2x

and letting y = vx, we obtain

dv 1 | 3
U~ TR
dy 1 v
or xa—; = —'2—v <+ 7
' dv _ v2—1
or, finally, X =
This equation is separable. Separating the variables, we obtain
2vdy _ dx
-1 x

Integrating, we find
In |v2 — 1] =In [x] + In e},
and hence v2—1=cx

Now, replacing v by %,c we obtain the solution in the form

»2 -

ﬁ - = CX
or y2 — x2 = cx3.
Example 2.13. Solve the initial-value problem

(y + Vx2 + yz)dx — xdy = 0,

y(1) = 0.

We have seen that the differential equation is homogeneous. As before, we write it in the
' /

~

form
dy _y+tN2+y2. .
dx . X : =

Since the initial x value is 1, we take x = /x2 and obtain

dy _y ,
Y oL NTF O

We let y = vx and obtain

v;f-x%=v+\/l+v2
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or xad—; = Vl + 2,

Separating variables, we find

dy
N
Using tables, we perform the required integrations to obtain
Iny + \¥2 + 1| = In |x| + In|c|,
or »+ AW+ 1 =cx

Now replacing v by£ , we obtain the general solution of the differential equation in the

% &

form

y y? _
-§+ §+ = CcX

or
y+ N2 F 2 = ex2.
The initial condition requires that y = 0 when x = 1. This gives ¢ = 1 and hence
y+ N2+ = a2
from which it follows that
y =362 -1,
Exercises ,
Solve each of the differential equations in Exercises 1 through 14.
1. 4xydx + (x2 + 1)dy = 0.
2. (xy + 2x 4 y + 2dx + (x2 + 2x)dy = 0.
V3. 2r(s? + )dr + (r* + 1ds = 0.
. cscydx + secxdy = 0.
. tanfdr + 2rdf = 0.
(e" + 1cosu du + e'(sinu + 1)dv = 0.
L (x+ DO+ Ddx 4 y(x2 + 3x + 2)dy = 0.
. (x4 y)dx — xdy = 0.
. (2xy + 3yDdx — (2xy + x¥dy = 0.,
10. v3du + (4 — w?)dv = 0.

O 00 N N B

11. (xtanZ + y)dx — xdy = 0.
\ x )

12. (252 + 25t + )ds + (2 + 25t — Pdr = 0.



