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(a) Show that ex and e?* are linearly independent solutions of the corresponding homo-
geneous equation

dty 4y

—— —=3=4+2y=0.

dx? dx T

(b) What is the complementary function of the given nonhomogeneous equation?
(c) Show that 2x2 4 6x + 7 is a particular integral of the given equation.

(d) What is the general solution of the given equation?

4.2 The Homogeneous Linear Equation With Constant Coefficients

A. Introduction
In this section we consider the special case of the nth order homogeneous linear dif-

ferential equation in which all of the coefficients are real constants. That is, we shall be

concerned with the equation

dry

dxn

dr—1 y
dxn1

(4.11) : Cat+a +"'+un_1%+a,.y=0
where ao, ai, . . . , @1 a, are real constants. We shall show that the general solution of
this equation can be found explicitly.

In an attempt to find solutions of a differential equation we would naturally inquire
whether or not any familiar type of function might possibly have the properties which
would enable it to be a solution. The differential equation (4.11) requires a function f

having the property such that if it and its various derivatives are each multiplied by cer-

dx"l‘f;’ are then added, the result will

equal zero. For this to be the case we would need a function such that its derivatives

were constant multiples of itself. Do we know of functions f having this property that
'k . .

a%[f(x)] = ¢f(x) for all xX? The answer is “Yes,” for the exponential function f such

that f(x) = em~, where m is a constant, is such that

tain constants, the a;, and the resulting products; a;

dr .
W[em] = mkemx,

Thus we shall seek solutions of (4.11) of the form y = emx, where the constant m will
be chosen such that emx does satisfy the equation. Assuming then that y = emx is a
solution for certain m, we have: :

A
. z; = me
éd%. = m2emx
4y _ mrem=,

dxn
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Substituting in (4.11), we obtain

aomremx - gymnlemx 4 - - - 4 a,_ymem* -+ a,emx = (
or
, emx(aom” + aym™1 - - - + ap_1m + a,) = 0.
Since emx = (, we obtain the polynomial equation in the unknown m:
(4.12) . aom® +amrt4---d+a,_im+a, =0

This equation is called the auxiliary equation or the characteristic equation of the given
differential equation (4.11). If y = emxis a solution of (4.11) then we see that the constant
m must satisfy (4.12). Hence, to solve (4.11), we write the auxiliary equation (4.12) and
solve it for m. Observe that (4.12) is formally obtained from (4.11) by merely replacing
the kth derivative in (4.11) by m*. (k =0, 1, 2, ..., n.) Three cases arise, according
as the roots of (4.12) are real and distinct, real and repeated, or complex. '

'B. Case 1. Distinct Real Roots
Suppose the roots of (4.12) are the n distinct real numbers

miy,ma, ..., M
Then

emx, emix | @max

are n distinct solutions of (4.11). Further, using the Wronskian determinant one may
show that these n solutions are linearly independent. Thus we have the following result.

THEOREM 4.9. Consider the nth-order homogeneous linear differential equation (4.11)
with constant coefficients. If the auxiliary equation (4.12) has the n distinct real roots
mi, ma, ..., mp, then the general solution of (4.11) is

Y = c1€m* - caemx - - - - 4 cpemax,
where ci, ¢2, . . ., ¢, are arbitrary constants.
d?y .dy

Example 4.18. v R + 2y =0.

The auxiliary equation is
m2—3m+42=0,
Hence
(m—1)0m—2 =0, m=1m=2

The roots are real and distinct. Thus e* and e2~ are solutions and the general solution
may be written

y = ci1e* + cae?*.

. We verify that ex and €2 are indeed linearly independent.
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ex e2x
ex De2x
Thus by Theorem 4.4 we are assured of their linear independence.

Ly _
dx3

Their Wronskian is W(e*, e2%) = = e3x = (),

4%y

dy -
Example 4.19. p + Zx 4+ 6y =0.

The auxiliary equation is
' m—4m2 4+ m+4 6 =0.

We observe that m = —1 is a root of this equation. By synthetic division we obtain
the factorization '

(m+1D)(m2—5m46) =0
or

(m+ 1)m — 2)(m — 3) = 0.
Thus the roots are the distinct real numbers '

my = _—-l,m2=2,m3 = 3,
and the general solution is

Yy = c1e7* + c2e2¥ 4 c3edv,

C. Case II. Repeated Real Roots ‘
We shall begin our study of this case by considering a simple example.

Example 4.20: Introductory Example. Consider the differential equation

@y L dy |
(4.13) EJ; —6Z+9=0.

The auxiliary equation is
B m—6m+9=0
or
(m—3)2=0.
The roots of this equation are ’
m=3m=3

(real but not distinct). :
Corresponding to the root m; we have the solution e3x, and corresponding to m> we
have the same solution e3>, The linear combination cj1e3x 4 c2e3* of these “two” solutions
is clearly not the general solution of the differential equation (4.13), for it is not a linear
combination of two linearly independent solutions.. Indeed we may write the combination
c1e3* + c2e3~ as simply coe3x, where co = c1 + c2; and clearly y = coe3s, involving one
arbitrary constant, is not the general solution of the given second-order equation..

We must find a linearly independent solution; but how shall we proceed to do so? Since
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we already know the one solution e3x, we may apply Theorem 4.7 and reduce the order.
We let o .

y = é¥xu,
where u is to be determined.
g}_,. = 3& 3x
Then ol + 3e _u,
dzy = 3x‘_i_2_lf 3& 3x.
y o Rl dx2+6e dx+9e u.

Substituting into equation (4.13) we have

xdzu x.d._u.. 3x> — 3x.d_u 3x. 3xy; =
(e3m+6e3dx+9e u) 6(e dx+3e u) + 9e3xu =0
or
du
e = O

Letting w = g% we have the first-order equation
3% =
¥ 0
or simply

dw
_ ‘7;—0.

The general solution of this first-order equation is simply w = ¢, where c is an arbitrary

constant. Choosing the particular solution w = 1 and recalling that g-; = w, we find

u=x- co,

where ¢o is an arbitrary constant. By Theorem 4.7 we know that for any choice of the
constant co, ue3* = (x 4 co)e3~ is a solution of the given second order equation (4.13).
Further, by Theorem 4.7, we know that this solution and the previously known solution
€3~ are linearly independent. Choosing co = 0 we obtain the solution

y = xe3x,
and thus corresponding to the double root 3 we find the linearly independent solutions
e3x and xe¥x

of equation (4.13).
Thus the general solution of Equation (4.13) may be written.

(4.14) y = c1e3* + coxedx
or _ :
(4.15) ¥ = (c1 + cax)ed~.
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With this example as a guide, lét us return to the general nth-order equation (4.11).
If the auxiliary equation (4.12) has the double real root m, we would surely expect that
emx and xem* would be the corresponding linearly independent solutions. This is indeed
the case. Specifically, suppose the roots of (4.12) are the double real root m and the
(n' — 2) distinct real roots

my, me,..., "In_z.‘
Then linearly independent solutions of (4.11) are
emx, xemx, gmx emx . gmw-ix
and the general solution may be written
y = ciem* 4 caxemx - cyemx 4 cqemx 4 - - - |- emnrx
or Y = (c1 + cax)em + czemx + coemx + - - -+ cpemnor,

In like manner, if the auxiliary equation (4. 12) has the triple real root m, corresponding
linearly independent solutions are

emx, xemx, and x2emx,
The corresponding part of the general solution may be written
(ci + cax + c3x2)emx,

Proceeding further in like manner, we summarize case II in the following theorem:

" THEOREM 4.10. (i) Consider the nth order homogeneous linear differential equation
(4.11) with constant coefficients. If the auxiliary equation (4.12) has the real root m
occurring k times, then the part of the general solution of (4.11) corresponding to this
k-fold repeated root is ’

(1 + c2x + c3x2 + - - - + cpxklemx,

(ii) If, fufthcr, the remaining roots of the auxiliary equation (4.12) are the distinct real
numbers M., . . . My, then the general solution of (4.11) is

¥y =(c1 + c2x + c3x2 + - - - + cxx*Nems + cppremix + - - - o cpemn,

(iii) If, however, any of the remaining roots are also repeated, then the parts of the
general solution of (4.11) corresponding to each of these other repeated- roots are ex-
pressions similar to that corresponding to m in part (i). -

We now consider several examples.

Example 4.21. Find the general solution of

By dy  dy _

The auxiliary equation ,
mi—4m2 —3m+4+ 18 =0
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has the roots 3, 3, —2. The general solution is
' y = c1€3* + caxed* 4 c3e2x
or
= (c1 + c2x)e3* + c3e™2x,

Example 4.22. Find the general solution of

& d
A R A )

P o
The auxiliary equation is o
mt — 5m3 + 6mr+4m — 8 =0,

with roots 2,2,2,—1. The part of the general solution corresponding to the threefold
root 2 is : '

y = (a1 + ec2x 4 cﬁxz)éZN
and that corresponding to the simple root —1 is simply
Y = cq€7 %,
Thus the general solution is
y={(a+cx+ c3x%)e?x 4 cue™x.

e

D. Case IIlI. Conjugate Complex Roots

Now suppose that the auxiliary equation has the complex number a + bi (g, b real,
2= —1, b= 0) as a nonrepeated root. Then, since the coefficients are real, the con-
jugate complex number @ — bi is also a nonrepeated root. The corresponding part of the

gcneral solution is
kle(c‘f'bl)x + kze(a-bl)x’

where k1 and k; are arbitrary constants. The solutions defined by elet®dx and ela=5)x are
complex functions of the real variable x. It is desirable to replace these by two real
linearly independent solutions. This can be accomplished by using Euler’s Formula,

ei? = cosf + isind,*
which holds for all real 6.
Using this we have:
kyetattdx 4 foeta=bidx

P kleaxebix + kzeaxe"bix
eax[kyeibx 4 kpemibx]
eaxki(cosbx -+ isinbx) + kz(cosbx — isinbx)]
eax[(ky 4 kz)coshx -+ i(kt — k2)sinbx]
eax[¢ysinbx + cacosbx],

-

*We borrow this basic identity from complex varlable theory, as well as the fact that e=#iz = goeid=
holds for complex exponents.
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where ¢; = (k1 — ka), ¢2 = k1 + k2 are two new zirbitrary constants. Thus the part
of the general solution corresponding to the nonrepeated conjugate complex roots
a-t biis

es*[c1sinbx + cacosbx].

Combining this with the results of case II, we have the following theorem covering case
IIL.

THEOREM 4.11. (i) Consider the nth-order homogeneous linear differential equation
(4.11) with constant coefficients. If the auxiliary equation (4.12) has the conjugate com-
plex roots a + bi and a — bi, neither repeated, then the corresponding part of the general
solution of (4.11) may be written '

y = e**(cisinbx 4 czcosbx).

(i) If, however, a + biand a — bi are each k-fold roots of the auxiliary equation (4.12),
then the corresponding part of the general solution of (4.11) may be written ’

y=e>(c1+c2x+ex2+ -+ crxk~1)sinbx
+ (kg1 + Cryzx + cx43x2 + - - - + caux*"V)cosbx].

We now give several examples.

Example 4.23. Find the general solution of

mtr=90%

We have already used this equation to illustrate the theorems of Section 4.1. Let us
now obtain its solution using Theorem 4.11. The auxiliary equation m? + 1 = 0 has
the roots m = = i. These are the pure imaginary complex numbers a = bi, where
a = 0, b = 1.. The general solution is thus
, y = e%(crsinl -x + cacosl - x),
which is simply
y = cisinx 4+ c2cosx.
E)\cample. 4.24. Find the general solution of

dy _ dy -
The auxiliary equation is m2 — 6m + 25 = 0.
Solving it, we find

o8 :t_'\/326v-7- 100 _ 6 * B _ 444

Here the roots are the conjugate complex numbers a = bi, where'a = 3, b = 4.
The general solution may be written

y= e3x(cisindx + cacosdx).
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Example 4.25. Find the general solution of

dly _ &y dZy dy -
Bk~ s T g — g+ 2 =0
The auxiliary equation is

mt — 4m3 + 14m2 — 20m + 25 = 0.
The solution of this equation presents some ingenuity and labor. Since our purpose in
this example is not to display our mastery of the solution of algebraic equations but
rather to illustrate the above principles-of determining the general solution of differ-
ential equations, we unblushingly list the roots without further apologies.
They are

14251 —2i,142i1—2i
Since each pair of conjugate complex roots is double, the general solution is
y = e¥(c1 + c2x)sin2x +.(c3 + cax)cos2x]
or '

¥y = ciexsin2x -+ caxe*sin2x -+ c3e*cos2x -+ csxe*cos2x.

E. An Initial-Value Problem
We now apply the results concerning the general solution of a homogeneous linear
equation with constant coefficients to an initial-value problem involving such an equation.

Example 4.26. Solve the initial-value problem

2
(4.16) ‘g;’i’ - 6%' +25p =0
(4.17) »0) = -3
(4.18) y0) = —1.

First let us note that by Theorem 4.1 this problem has a unique solution defined for all
x, —o < x < o, We now proceed to find this solution; that is, we seek the particular
solution of the differential equation (4.16) which satisfies the two initial conditions (4.17)
and (4.18). We have already found the general solution of the differential equation (4.16)

in Example 4.24.

It is :

4.19) y = e3*(cisindx + cacosdx).

From this, we find

(4.20) Y — (e — desindx + (o1 + 3es)cosdal.

We now apply the initial conditions. Applying condition (4.17), y(0) = —3, to Equation
(4.19), we find o

—3 = e%(¢;sin0 + c2c0s0)
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which reduces at once to

(4.21) = —3.

Applying condition (4.18), y'(0) = —1, to Equation (4.20), we obtain
—1 = e%(3ci — 4cz)sin0 + (401 -+ 3cz)cos0]

which reduces to

(4.22) 4¢; + 3c2 = —1.
Solving Equations (4.21) and (4.22) for the unknowns c; and c;, we find
. o =2
C2 = —f3.

Replacing ¢; and c2 in Equation (4.19) by these values, we obtain the unique solution of
the given initial-value problem in the form

y = e3x(2sindx -— 3cosdx).

We may write this in an alternate form by first multiplying and dividing by y/(22) + (—3)?
= 4/13 to obtain

2 . -3
y= Vl3e3*[ sindx — —=cos4x |-
V13 V13

From this we may express the solution in the alternate form
y = V13e3ssin(4x + ¢),
where the angle ¢ is defined by the equations
sin ¢ = 3

Vi3

cos ¢ = 2

V13

Exercises

Find the general solution of each of the differential equations in Exercises 1 through 24.

dy dy |
1. =2 —5= 46y =0.
za dx+y

dy dy
2= 2= _3y=0.
w2 a7

dzy dy
342 — 122 4+ 5y =0.
T dx+ y
4.3 14 _s, 0,
dx? dx

ey dy dy
5.2 ~3Z 2 4+ 3y=0.
PR L



