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4.4 Variation of Parameters

"~ A. The Method ,
‘While the process of carrying out the method of undetermined coefficients is actually
quite straightforward (involving only techniques of college algebra and differentiation),
the method applies in general to a rather small class of problems. For example, lt wauld
not apply to the apparently simple equation
. oy
- dx2

We thus seek a method of finding a particular integral which applies in all cases (including
variable coefficients) in which the complementary function is known.Such a method is the
method of variation of parameters, which we now consider.

We shall develop this method in connection with the general second order lmear
differential equation with variable coefficients

+y-tanx

(4.29) ao(x)d—x-; + “'(")d—x + axx)y = F(x).

. Suppose that y; and y» are linearly independent solutlons of the correspondmg homo-
geneous equatlon

(4.30) GO(X)%]-; + al(x)% + az(x)y = 0.

Then the complementary function of equation (4.29) is
a1 + c2p2,
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where ¢ and ¢, are arbitrary constants. The procedure in the method of variation of
parameters is to replace the arbitrary constants ¢; and ¢z in the complementary function
by respective functions vi and v2 which will be determined so that the resulting function

(4.31) 4 viyr + vay2

will be a particular integral of equation (4.29) (hence the name, variation of parameters).
We have at our disposal the two functions vi and v, with which to satisfy the one
'condition that (4.31) be a solution of (4.29). Since we have two functions but only one
condition on them, we are thus free to impose a second condition, provided this second
condition does not violate the first one. We shall see when and how to impose this
additional condition as we proceed.
We thus assume a solution of the form (4.31) and write

(4.32) Yo = viy1 + vap2.
Differentiating (4.32), we have '
(4.33) .- Yp = viyi + vays + viy1 + viy,

where we use primes to denote dlﬂ'erentnatlons At this pomt we lmpose the afore-
mentioned second condition; we simp smanding that .

4.34)

With this condition imposed, (4.3

(4.35) Ve ="viyi + vayh.

Now dlﬁ'erentlatmg (4. 35), we obtain

(4.36) , = viy{ + vayy + Vl)’l + viys.

We now impose the basic condition that (4.32) be a solution of Equation (4.29). Thus we
substitute (4.32), (4.35), and (4. 36) for ¥s Z ,and 52; respectwely, in Equatlon 4. 29) and

P

obtain the 1dentlty . ‘ : i
aolviyy + vay!! + vyl + f;,v;] + ai[viyy + vays] + aslvyn + vapsl = F.

This can be written as - ' : ' o

(4.37) vilaoyy + ary’, + a] + vilaoyy + ayy + awa] + aolviy, + viyh] = F.

Since y1 and y; are solutlons of the corresponding homogeneous differential equatlon

(4.30), the expressions in the first two brackets in (4.37) are identically zero. Thls leaves
merely

4.38 : = — :
(4.38) L34 + v,y, - | - |
This is actually what the basic condition demands. Thus the two imposed conditions
require that the functions v; and v2 be chosen such that the system of equations

: yvi +y2vy =0
(4.39) o F

’ ror 4
v+ vy s
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. is eétisﬁegj. The determinant of coefficients of this' system‘is precisely

o= 74

- Since y1 and y; are linearly mdependent solutions- of the corresponding homogeneous

differential equation (4.30), we know that W(y, y2) # 0.. Hence the system “. 39) hasa -

unique: solutlon Actually solvmg this system we obtam

-0 y2
, F v v
P T N
Ty @B )
b
vy 0
Fl .
V,= VS a - Fy, .
. 2Tt aOW(J’l,.VZ)
- ' on

. Thus we obtain the fdncﬁons vi and vz given by -

[ F@yAndr
n(x) = ao(?) Win(®), y2(1)]

(4.40)
.

‘_- *  Fy(ndt
v2x) = _[ = OLATION yz(t)]

Thei‘efore a partxcular 1ntegral of equatxon 4. 29) is

: c Yo =y + vy,
where v and 2 are deﬁned by (4. 40)

B. Examples . o S : -
" Example 4.34. S
@441 L Sy -um
The complementary function is '
. Ye = c1sinx + c2c0sx.
We assume o _
4.42) . yp = wsinx + rxcosx,

where the functlons v1 and vz will be determmed such that this is a pattncular mtegral
-of the dxﬁ'erentml equanon (4.41). Then

Y= vlcosx - stmx 4+ v{sinx 4 vzcosx
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We impose the condition _
(4.43) ' , visinx + vicosx = 0,
leaving ' »
. Yp = V1C0sXx — vasinx.
From this
(4.44) Y = —wsinx — vacosx + vjcosx — visinx.
Substituting (4.42)- and (4.44) into (4.41) we obtain
 (4.45) I v{cosx — visinx = tanx.

-Thus we have the two equations (4.43) and (4.45) from which to determirie Vi vﬁ:
visinx + vicosx = 0
vicosx — visinx = tanx.

&

Solving we find:

0 cosx| .
, _ [tanx —sinx] —cosxtanx .
Vi = 1= = - — = 8Inx,
sinx cosXx -1

cosx —sinx

sinx 0

pi = jcosx tanx| _ sinxtanx _ —sin2x

2~ Isinx  cosx —1 cosx
cosx —sinx] . ‘ '
cos2x — 1- -

= ~—————— = COSX — SECX.
COSX
Integrating we find: _ . : B o

(4.46)

vy = —cosx 4+ c3,

v2 = sinx — In |secx + tanx| + cq.
-Substituting (4.46) into (4.42) we have '
’ ¥p = [—cosx + es]sinx + [sinx — In [secx + tanx| + _c4]cbsx

= —sinx cosx + ¢3sinx - sinx cosx
— In |secx + tanx]| (cosx) + c4cosx

= c3sinx + c4cosx — (cosx)[In [secx + tanx]).

Since a particular integral is a solution free of arbitrary _constarits, ‘we ‘may assign any
particular values 4 and B to c¢s and cq, respectively, and the result will be the particular

integral . _ . .
Asinx + Beosx — (cosx)[In [secx + tanx|].
Thus Y = y.+ y, becomes: .

¥y = cisinx + cacosx 4 Asinx + Bcosx — (cosx) In [secx + tanx]
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which we may write as .
y = Cisinx + Cacosx — (cosx) ln |secx + tanx|,

“whereCy =c1 +4,C2=c2+ B.

. Thus we see that we might as well have chosen the constants c¢3 and ¢4 both equal to 0
in (4.46), for essentially the same result, y = ¢ sinx -+ c2 cosx — (cosx) 1a |[secx + tanx],
would have been obtained. This is the general solution of the differential equation (4 41).

_ The method of variation of parameters extends to higher order linear equations.” We
now illustrate the extension to a third-order equation in Example 4.35, although we hasten
to point out that the equation of this example can be solved more readily by the method of
undetermined coefficients. : :

Example 4.35.

d’-‘y

dxd dxz 2+ 11 — 6y = e~

- (4.47)

The complementary function is

Ye = c1e* + c2e2* + c3edx.
We assume as a pa('ticular integral
(4.48) _  yp = viex+ vae2x 4 vzedx,

Since we have three functions v1, vz, v3 at our disposal in thls case, we can apply three
conditions. We have: _
' yh = vie* + 2v2e?* + 3ved* + vie + viezx 4 viedx,

Proceeding i in a manner analogous to that of the second-order case, we impose the con-
dition

(4.49) | ' v{iex + vielx + vie3* = 0,
leaving ' v |
(4.50) : ' yh = viex + 2ve?* + 3v3ed=,
Then

" = yrex + 4vae2x + 9vied* + viex + 2vie2x + 3viedx,
P i 2 3

We now impose the condition

(4.51) ' ‘ viex + 2vhe2x + 3vjedx = 0,
leaving o '
(4.52) o Y = viex + 4vae2s + Ivzedx,
From this, ' '

(4.53) . YU = viex + 8vae2x + 2Tvaed* + viex + 4dvie?* + Ivied~,
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We substitute (4.48), (4.50), (4.52), and (4;55) into the differential equation (4.47), obtain-
ing:
vie* + 8vze2x + 27v3edx 4 viex + 4yje2x 9vied
— 6viex — 24ve2x — S5dyzedx
+ 11viex + 22vye2x + 33yze3x
— 6viex — 6vie2x — Gyiedr = ex
or -
(4.54) ‘ Vex 4 4yje?x 4 9yiedx = ex,
Thus we have the three equations (4.49), (4.51), (4.54) from which to determine v{, v3, v4:
. viex + vie2x + vie3* = 0
viex + 2vie?x 4 3vie3x = 0
viex + 4vie2* + 9yjedx = ex,

Solving, we find:

0 e2x e3x|
2x 3x] )
0 2e2x 3e e

oo ler dex 9e €7 3
17 e e "N 11 2
ex 2e2x 3e3x e6x] 2 3 :
ex 4e2x 9gdx 1 49
.ex 0 e3x .
ex 0 3e3x g
(e e 9ed € 3
V2 = ex .e2x’ @3z ~ T 2ebx = e

ex  2e2x- 3edx
ex 4e2x ‘9e3x
lex 'e2x 0 ) .
ex 2e2x -0 ot : e
, _ lex 4de2x  ex 1 2 -
. V3 = ex  e2x e3x] = 2eb6x ‘
ex 2e2x  3e3x|
“lex 4e2x Qe3x

£

We now integrate, choosing all the constants of mtegratlon to be zero (as the previous
‘example showed was possible). We find:

‘-vb = lx V2 = e”x v = _l —2x
Thus -
: 1 1 1 3
= —xe~ ~Xe2X L L o~2xp3X — _yoX x
Yr _2xe + e *e Ze | e’x. 2xe + 4—8 N
andso L

<

Y =Y+ yp = c1e* + cae?x 4 c3e3x 4+ %xe* + y
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' 1
= ciex + cZer + C3€3x_+ .ixex,

where ¢; = ¢1 + #.

In Examples 4.34 and 4.35 the coefficients in the differential equation were constants.
The general discussion at the beginning of this section shows that the method applies
- equally well to linear differential equations with variable coefficients, once the comple-
mentary function Ye is known. We now illustrate its application to such an equation in
Example 4.36.

Example 4.36. v ‘
(4.55) @0 @y —se
dx? dx ‘
In Example 4.15 we solved the cdi'rééponding homogeneous equation
(x2 + l)d2 —2x +2y 0.

From the results of that example we see that the complementary function of equatxon
(4 55) is ,

) ' Yo = C1x + cz(xz,— l).
To find a ﬁartiéular integral of cqﬁ’ation (4.55), we therefore let
(4.56) ‘ ' : ‘ Ir= - nx + vz(x2 -1,
whergy; and v; are functions of x. Then

yh=w-1+4 v 2x+v1x+v2(x2— 1).

We impose the condition

CR7) N o yix vz - 1) =0,
leaving o ‘
- (4.58) - ' b =1+ v 2x.
From this, we find" |
(4.59 . Yy = +2n + v5:2x

Substxtutmg (4.56), (4.58), and (4 59) into (4.55) we obtain
(x2 4+ D(vi + 22 + 2xvz) — 2x(v + 2xv2) + 2[vix + v2(x2 — 1)] = 6(x2 + 1)2
or
(4.60) @0+ = 6(x2'+ 1)2.
Thus we have the two equations (4.57) and (4 60) from which to determine v{ and v3;
that is, v{ and v3 satisfy the system :

{le + w2 —1) =0,
v + V(20 = 6(x2 + 1),
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Solving this system, we find

0 x2 — lI
6(x2 4+ 1) —6(x2 + 1)(x2 -0 _

Ix x2 - lI Jc2 +1 —6(2— 1)
1 _

vi

]

, l 6(x2 + l)I 6x(x2 4+ 1) = 6x

[ e e | R |
1 2x
Integrating, we obtain
' v = —2x3 4 6x,
(4.61) {v2 - 3,

where we have chosen both constants of infegration to be zero. Substituting (4.61) into
(4.56), we have .

Yp = (—2x3 + 6x)x +3x2(x2 = 1)

, L =TxA 4 32
Thergf"orc the general solution of equation (4.55) may be expressed in the form
Y=yt

=c1x + éz(xz = 1) + x4 + 3x2.

C. The Superposition Principle for Particular Integrals

If the: nonhomogeneous member of a linear differential equation is expressed as a
linear combination of two or more functions, the following theorcm may ofgcn be used
to advantage in finding a partlcular mtegral

THEOREM 4.12.

Hpypothesis.
(1) Let f be a particular mtegral of

@D a2t I bt i 6oy = FR.
(2) Letgbea panicular integral of A' ‘ ‘
@6 W +aWEE + e i@ + ey = 6.

Conclusion. 'Thén kif + kzg is a particular integral of
460 aoIZ2 4wt 4o+ o a i + @y = kPO + ka0,

where k; and k2 are constants.
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Let us apply this theorem to an equation of the form (4.64), where the coefficients
o, ..., a,are constants. Suppose that F is a simple UC fupction but that G is not.
Then we could not apply the method of undetermired coefficients to find a particular
integral of Equation (4.64). However, we could find a particular integral of equation
(4.62) by the method of undetermined coefficients, and then use variation of parameters
_ to find a particular integral of Equation (4.63). Then applying Theorem 4.12, the ap-
propriate linear combination of these two particular integrals, found by different methods,
is a particular integral of Equation (4.64). e

Example 4.37. Find a particular integral of
o dzy 2k
(4.65) ‘ e + y = 3ex + Stanx.
We c_Onsider"the two equations

(4.66) . y zx_z. + y = ex

and .
_ ' ' dzy = tan
(4.67) ) +y — -tanx.

‘Since therfunction defined by exisa UC function, a particular integral of Equation (4.66)
may be found by the method éaf undetermined coefficients. Letting y, = Ae*, we find at
once that A = }; hence a particular integral of (4.66) is

Yp = 5e%

" Since the function defined by tam is not a UC function, we turn to variation of param-
eters to find a particular integral of Equation (4.67). We have already solved this
problem in Example 4.34; we found there that a particular integral of (4.67) is

yp = —(cosx)ln [secx + tanx].

. Thus, applying Theorem 4.12, a particular integral of Equation (4.65) is

Vp = %ex — 5(cosx)In |secx + tanx]|.

Exercises
Find the general solution of each of the differential equations in Exercises 1 through 13.

L, &y
1.,Ez+y=cotx.

d’y
2. 2;2' +"y = tan2x.

d?y
B.Zx;+y=secx.



