1. For the circuit shown the transistor used has β = 200 and is made of silicon. Assuming the capacitors offer negligible impedance at the signal frequencies calculate the requested quantities.

- 2. For the circuit shown, supply approximate values for the indicated components. The silicon transistor has a minimum β of 80. The desired characteristics are:
- \bigcirc a) Gain = -10
- () b) Output impedance = 10 K
- 3) c) Output voltage swing = ± 5 V minimum
- (4) d) Input impedance = maximum consistent with stability against variation in transistor parameters (80 < β < ∞ , in this case).

For each of the biasing schemes shown above, find the value for R_B which will give a quiescent output voltage of about 8 volts at V_0 if the transistor has a β of 50. You may assume that $V_{RE} \equiv 0.7$ volts.

If you build the circuits using the values of $R_{\rm B}$ calculated above, but the transistor actually has β = 200, what will be the quiesceent operating point for each circuit? (A range of 50-200 in β is reasonable for transistors of a given type when both manufacturing tolerances and temperature effects are taken into account.)