

1

in the TRIDENT Experiment The Camera System & Tau Neutrino Search

Wei Tian, Tsung-Dao Lee Institute @ Harvard University, Boston 08.23.2024

Outline

- **1. Neutrino astronomy & Neutrino telescopes**
- **2. TRIDENT (**海铃计划**):A proposed next-generation neutrino telescope** (1) Location (2) Detector layout (3) hDOM design (4) Pathfinder (5) Physics potential
- **3. The camera system: an eye for real-time optical calibration** (1) Hardware design (2) Image processing methods (3) Calibration process
- **4. Identifying astrophysical tau neutrinos based on hDOM waveforms**

(1) Simulation pipeline (2) Double Pulse algorithm (3) Exploration of using GNN

5. Summary

High-energy astrophysical neutrinos

 \triangle Multi-messenger Astronomy Era \triangle Neutrino as an astrophysical messenger:

Art picture by Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

v **Exploring the origin of cosmic rays**

Hadronic processes (*py or pp* collision):

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$ $\mu^+ \rightarrow e^+ + v_e + \overline{\nu_\mu}$

Neutrino telescopes: IceCube & ANTARES

Observation of astrophysical neutrino flux

 \div All-sky observation of neutrino flux \div

v **A global fit of the flux by both Track and Cascade events**

Origins of astrophysical neutrinos

Neutrino flavor detection

\div **Flavor ratio: a powerful probe for exploring new physics:**

v **Observation of astrophysical tau neutrinos with IceCube:**

from J. A. Aguilar, on behalf of IceCube, Neutrino 2024, Milan

The dawn of neutrino astronomy

❖ Neutrino production region & mechanism

- v **Questions remained for cosmic neutrinos**
	- 1. More astrophysical neutrino sources
	- 2. Cosmic-ray production & propagation
	- 3. Neutrino mass/oscillation
	- 4. Physics environment of black hole
	- 5. Fundamental physics: Lorentz invariance, etc.

Next-generation of neutrino telescopes 2.2 Marine and Earth Sciences

(HUNT, NEON)

Medium: Deep-sea water Depth: \sim 2.6 km **Volume:** $\sim 1 \text{ km}^3$ **String number:** ~70 **P-ONE (East Pacific Ocean)**

produced by such a telescope will require more than one cable running to the shore. Each such cable will require its own

detection nodes. This network will incorporate a number of secondary junction boxes strategically positioned around the footprint of the neutrino telescope and connected to a primary junction box. Each secondary junction box will have a suite of sensors connected to it and will deliver continuous realtime data to shore, providing constant long‐time monitoring.

Depth: \sim 3.5 km KM3NeT (Mediterranean Sea) \bigcirc \bigcirc Baikal-GVD (Lake Baikal) **Medium: Deep-sea water Volume:** $\sim 1 \text{ km}^3$ **String number:** 115*2 blocks

Medium: Deep-lake water **Depth:** ~ 1.4 km **Volume:** $\sim 1 \text{ km}^3$ **String number:** ~140

Medium: Glacial ice **Depth:** \sim 2.5 km **Volume:** $\sim 8 \text{ km}^3$ **String number:** ~210

IceCube Gen-2 (South Pole) TRIDENT (West Pacific Ocean) Medium: Deep-sea water **Depth:** \sim 3.5 km **Volume:** $\sim 8 \text{ km}^3$ **String number:** ~1000

 \overline{a}

 \circledcirc

হার

TRopIcal DEep-sea Neutrino Telescope (TRIDENT)

 $\textbf{\textsterling}}$ **TRIDENT location** (~ 114.0°E, 17.4°

)**) :** v **All-sky scanning of astrophysical neutrinos:**

Detector layout of TRIDENT

Water depth: ~3500m

Number of strings: ~1000 (20 hDOMs per string) **Inter-string distance:** 70m/110m, **Inter-DOM distance:** 35m **Detection Volume:** $\sim 8 \text{ km}^3$

Penrose-tiling geometry:

- 1. Avoid corridor events
- 2. Balance track/cascade events
- 3. Paths for underwater-maintenance

hybrid Digital Optical Module (hDOM)

TRIDENT hDOM: PoS ICRC2023 (2023) 1213

TRIDENT SiPM: JINST 19 (2024) 06, P06011

Pixelized PMT + SiPM layout:

- 1. 4π photon coverage (+10% by SiPM)
- 2. Better SPE time resolution (without magnetic shielding)
- 3. PMT coincidence trigger for K40/dark noise
- 4. Photon distribution on hDOM surface

TRIDENT Pathfinder experiment (2021)

v **TRIDENT Explorer (T-REX)**

v **T-REX deployment (depth of 3420m)**

T-REX apparatus

Experiment goals:

- **1. Optical properties**
- 2. Oceanographic conditions
- 3. Radioactivity (K40 decay)
- 4. Prototype test at 35MPa

Light Receiver Module A&B :

Two systems: **PMT** and **Camera** systems Synchronization : White Rabbit $(< 1ns)$ *(PMT: JINST 19 (2024) 05, P05040, Camera: arXiv:2407.19111)*

Light Emitter Module :

Three wavelengths: **405nm, 460nm, 525nm** Pulsing mode (PMT) & Steady mode (Camera) *(Light source: NIM-A 1056 (2023) 168588)*

Optical calibration in water-based neutrino telescopes

v **The canonical optical parameters:**

Absorption length $(\lambda_{abs}) \sim$ **photon loss**

Scattering length (λ_{sca} **) ~ photon deflection**

- Rayleigh scattering (λ_{Ray}) :
- Mie scattering (λ_{Mie} , $\langle cos\theta_{Mie} \rangle$):

Attenuation length (λ_{att}) **:**

$$
I(L) = I_0 \cdot e^{-\left(\frac{L}{\lambda_{abs}} + \frac{L}{\lambda_{sca}}\right)} = I_0 \cdot e^{-\frac{L}{\lambda_{att}}}
$$

v **Cherenkov waveband in water medium**

- v **Extra challenge in optical calibration:**
	- **1. Dynamic water medium**
	- **2. Time-varying optical properties**
	- **3. Non-uniformity in large volume/different depths**
- Wei Tian (TDLI) \sim 15 **4. Bio-activity / Sedimentation**

The commonly-used optical calibration methods

PMT + Pulsing light source:

(Antares-2004, KM3NeT-LAMs, P-ONE Straw-a)

- **1. Must work under single-photon mode**
- **2. Hours-long data accumulation**
- **3. Hard to separate the direct photons, "** $\lambda_{\text{eff,att}}$ "

Specialized laser facility:

(KM3NeT-AC9, Baikal-5D)

- **1. Nice precision of canonical optical parameters**
- **2. Need extra calibration/deployment**
- **3. Localized measurement**

The camera system and its control module

Camera + Isotopic steady light source:

- **1. O(~0.05s) exposure time**: **Real-time calibration**
- **2. ~8cm size**: Integrated in DOMs, across the detector
- **3. Other applications:** Environment & Self-monitoring
- **4. Robustness:** no need for precise synchronization

Control & DAQ module : **Raspberry 4Pi & FPGA**

- 1. Two additional sensors for DOM monitoring
- **2. Real-time data transmission/ Remote operation**

Wei Tian (TDLI) 17

Camera settings during the data taking process

Optical measurement strategies of the camera system

v **Exclude scattered light by viewing angle:**

Direct light:
$$
I_{dir}(R) = I_0 \cdot e^{-(\frac{R}{\lambda_{abs}} + \frac{R}{\lambda_{sca}})} = I_0 \cdot e^{-\frac{R}{\lambda_{att}}}
$$

Camera (direction, pixel)

The I_{center} method for λ_{att} measurement

\div Using the mean gray value of the Centroid Pixel:

Pixel (Exclude scattered light by a small angle)1ţ $-\frac{R}{2}$ **Within a unit solid angle:** $I_{dir}(R) = I_0 \cdot e$ λ_{att}

*I*_{center} method:
$$
\lambda_{att} = -(L_A - L_B)/\ln(-\frac{I_A}{I_B} \cdot \frac{I_0'}{I_0})
$$

 $(\frac{I_0'}{I_0})$ indicates the non-uniformity of the light source)

Verification of the I_{center} **method**

Vater tank experiment to test I_{center}

χ^2 fitting method for λ_{att} , λ_{abs} , λ_{sc} measurement

- RIJENT $\frac{1}{1}$ is $\frac{1}{1}$ it $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
- v **Comparing the gray value distribution of Real & Geant4 Simulated images:**

Wei Tian (TDLI) 22

Calibrate the cameras in deep-sea temperature

Calibrate the emission PDF of the T-REX light source

Camera response calibration

 \diamond Distortion test in long distance \diamond **Focal length recalibration in water**

An extra 'lens' caused by curvature of glass vessel

Remote operation of the camera system

 1.00

 $0.75 -$

 0.50

 0.25

 0.00

 -0.50

 -0.75

 $-1.00 -$

 -1.00 -0.75 -0.50

vertical

direction

time: 02:16:52

slope angle: 6.86°

temperature: 21.0°C

 -0.25

 0.00 0.25 0.50 0.75

horizontal direction

^v **Deep sea operation: Depth 3420m, wavelength 460nm, 0.05s gain08**

 $-0.75 -0.50$

 -0.25 0.00

horizontal direction

 0.25

0.50 0.75

time: 01:25:44

slope angle: 1.59°

temperature: 19.0°C

 $0.75 -$

 $0.50 -$

 $0.25 -$

€ 0.0

 $\frac{1}{2}$
 $\frac{1}{2}$ -0.25

 $-0.50 -$

 $-0.75 -$

 $-1.00 -$

 -1.00

Optical measurement results from T-REX

Wei Tian (TDLI) 26 **Effective model:** $I(L) \approx I_0 \cdot \frac{A}{4\pi L^2} \cdot e^{-L/\lambda_{eff,att}}$ **Refined model:** $I(L) = I_0 \cdot e$ $-\frac{\bar{L}}{2}$ $\overline{\lambda_{abs}}$, $\overline{L}\left(L,\lambda_{Mie},\lambda_{Ray},\langle\theta_{Mie}\rangle\right)$ *(TRIDENT camera: arXiv:2407.19111)*

A preliminary timeline for TRIDENT

T-REX

10 strings, 200 hDOMs 200km electric-optical cable

All-flavor neutrino detection in TRIDENT

Tau neutrino simulation:

PMT & ADC characterization in waveform simulation

PMT characterization Hamamatsu-CR519 PMT Response Curve 4000 Voltage[mV] $\frac{6}{2}$ 3000 with ~60k wfs $\frac{1}{2}$ s = $\frac{1}{2}$ = $\frac{1}{2}$ non-linear response **with ~60k wfs**1000 • Original Points - Fitted Curve, R-squared=0.9998 Saturated at 4539.6 photons $\overline{40}$ Ω 2000 4000 6000 8000 10000 12000 14000 $\dot{\mathbf{O}}$ 20 60 80 100 120 140 Incident photon number $time[ns]$ **SPE waveform template PMT non-linear response Transit Time Spread (1.8 ns) After-pulsing rate** $(-1\% \text{ in } 1\mu\text{s})$ **Quantum Efficiency (~28%) Dark Count Rate (~300Hz)**

ADC characterization

Three levels for v_{τ} **identification**

v **A typical tau neutrino event (CC interaction) in TRIDENT:**

DOM-level waveforms & Double Pulse waveform

DOM-level double pulse waveform from NuTau CC PMT stacking Job0, Event id=180, hDOM id=5644, E_NuTau=100.1 TeV, Decay_len=7.83m, E_Tau=83.5TeV,
L_OA=35.5m, cos=0.37, delta T=20ns ${\nu_\tau}$ **PMT** id = 13 Complete WL P
DIS_hits
Textbecar hits Complete Wf 400 $---$ DIS hits num = 139 **Vertex 1:** $---$ TauDecay hits num = 202 400 600 **CC** interaction 300 **PMT** id $= 14$ $[{\rm mV}]$ Complete WL P
---- DIS July
---- TouChener Juny $v_{\tau} \rightarrow \tau^{-}$ **TRIDENT NDOM** Voltage 200 100 **PMT** id $= 26$ **Vertex 2:** Complete WL P $0 +$ **Tau Decay** 100 150 200 250 300 350 400 $\tau^- \rightarrow e^ \rightarrow \pi^{0/\pm}$ 400 600 20 Slope **PMT** id $= 25$ = Complete WC 8
- DIS Mis
- Teatherny hits -20 150 200 250 300 100 350 400 Time [ns] v_{τ} **TRIDENT HDOM** $\ddot{}$

Parameters in Double Pulse Algorithm (DPA)

Level 1: Pre-cuts

- **1. Total hits number >= 50**
-

Level 2: Double Pulse Algorithm

1. Peak Voltage threshold >= 50 mV (~10 P.E)

Wei Tian (TDLI)

Double Pulse NuTau examples @ 100TeV

DOM-vertex distance is (m) 31.68998936015759 cos theta is 0.5708957640611657 Tau_decay_len is (m) 22.853077741728573 Energy_asymmetry is (E1-E2)/(E1+E2) -0.929506172917025 Tau_decay_type is -211.0 Tau_energy is (TeV) 96.4937734375 NuTau_energy is (TeV) 100.0191393962952 DP_hDOM_id 4603 DP_hDOM_photons 330.0

DOM-vertex distance is (m) 87.08125785363386 cos_theta_is_0.8183215318472292 Tau_decay_len is (m) 1.7451686367946955 Energy_asymmetry is (E1-E2)/(E1+E2) -0.46891943538757885 Tau_decay_type is 13.0 Tau_energy is (TeV) 73.499921875 NuTau_energy is (TeV) 100.07345549976581 DP_hDOM_id 13132 DP_hDOM_photons 102.0

DOM-vertex distance is (m) 32.803740762943754 cos_theta is 0.5352488581447665 Tau_decay_len is (m) 7.8044109333218055 Energy_asymmetry is (E1-E2)/(E1+E2) -0.7935163101563747 Tau_decay_type is 310.0 Tau_energy is (TeV) 89.7155703125 NuTau_energy is (TeV) 100.04433169016211 DP_hDOM_id 4392 DP_hDOM_photons 819.0

"Double Pulse" NuE examples @ 100TeV

DOM-vertex distance is (m) 22.503307646104563 cos_theta is -0.7964778843700554 NuE_energy is (TeV) 100.08168891518315 DP_hDOM_id 6885 DP hdom photons: 221.0

DOM-vertex distance is (m) 25.794190719968654 cos_theta is -0.653792703560148 NuE_energy is (TeV) 100.05135916088857 DP_hDOM_id 7567 DP hdom photons: 205.0

DOM-vertex distance is (m) 22.928976066429097 cos_theta is -0.6359760188329503 NuE_energy is (TeV) 100.0791925368603 DP_hDOM_id 15945 DP hdom photons: 271.0

DPA under various waveform sampling rates

Waveform examples under different ADC sampling rates:

For fixed 100TeV NuTau & NuE (10k events, fixed random seed)

DPA efficiency and expected event rate in TRIDENT

Assumed an isotropic diffused flux : *[IceCube: Arxiv 2402.18026]*

$$
\Phi_{Astro}^{per-flavor} = 1.68 \times (\frac{E_v}{100 TeV})^{-2.58} \times 3 \times 10^{-18} GeV^{-1} s^{-1} cm^{-2} sr^{-1}
$$

Expected double pulse events per year in TRIDENT :

Tau neutrino identification by Graph Neural Networks

v **TRIDENT-Net: a GNN-based point cloud for event identification** *(PoS ICRC2023 (2023), 1092)*

Wei Tian (TDLI) 38

MC dataset: Training set (70%) + Test set (20%) + Apply set (10%)

[10TeV, 100TeV] GNN model

[100TeV, 1PeV] GNN model

(Need further optimization & more MC data …)

Summary

- **IceCube**'s observation leads the dawn of neutrino astronomy.
- **TRIDENT** is a 8km3 neutrino telescope with 1000 strings, 20,000 hDOMs.
- **TRIDENT Pathfinder experiment** was successfully conducted in 2021 for site selection
- The T-REX **Camera System** demonstrated a **Real-time Optical Calibration** tool in deep sea
- By using **Double Pulse Algorithms** for NuTau identification in TRIDENT, **~5 NuTau CC/year**
- We are also exploring using **GNN** for NuTau identification, need further optimization

Thanks for listening!

Physics potential of TRIDENT by v_{μ} **events**

v **Detection sensitivity of neutrino flux:**

v **Discovery potential for different sources:**

Oceanographic conditions

 ^{40}K decay activity : **11101** \pm **119** Bq/m³

Ship towing tank experiment in SJTU

3. TRIDENT Pathfinder experiment


```
Data re-weight: 1/L^2 \cdot e^{-ct_i/\lambda_{abs}}
```
• PMT : quick measurement of λ_{abs} : \bullet PMT: Global χ^2 fitting for all parameters:

with **Geant4:**
$$
\chi^2 = \sum_{i=1}^N \frac{[M_i - T_i(1 + \sum_{k=1}^K \epsilon_k)]^2}{\sigma_{Mi}^2 + \sigma_{Ti}^2} + \sum_{k=1}^K \frac{\epsilon_k^2}{\sigma_k^2}
$$

