

The Camera System & Tau Neutrino Search in the TRIDENT Experiment

Wei Tian, Tsung-Dao Lee Institute @ Harvard University, Boston 08.23.2024

Outline

- 1. Neutrino astronomy & Neutrino telescopes
- 2. TRIDENT (海铃计划): A proposed next-generation neutrino telescope
 (1) Location (2) Detector layout (3) hDOM design (4) Pathfinder (5) Physics potential
- 3. The camera system: an eye for real-time optical calibration
 (1) Hardware design (2) Image processing methods (3) Calibration process
- 4. Identifying astrophysical tau neutrinos based on hDOM waveforms

(1) Simulation pipeline (2) Double Pulse algorithm (3) Exploration of using GNN

5. Summary

High-energy astrophysical neutrinos

Multi-messenger Astronomy Era

***** Neutrino as an astrophysical messenger:

Art picture by Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

***** Exploring the origin of cosmic rays

Hadronic processes (py or pp collision):

 $\pi^+ \to \mu^+ + \nu_\mu$ $\mu^+ \to e^+ + \nu_e + \overline{\nu_\mu}$

Neutrino telescopes: IceCube & ANTARES

Observation of astrophysical neutrino flux

✤ All-sky observation of neutrino flux

✤ A global fit of the flux by both Track and Cascade events

Origins of astrophysical neutrinos

Neutrino flavor detection

Flavor ratio: a powerful probe for exploring new physics:

***** Observation of astrophysical tau neutrinos with IceCube:

from J. A. Aguilar, on behalf of IceCube, Neutrino 2024, Milan

The dawn of neutrino astronomy

Neutrino production region & mechanism

- ***** Questions remained for cosmic neutrinos
 - 1. More astrophysical neutrino sources
 - 2. Cosmic-ray production & propagation
 - 3. Neutrino mass/oscillation
 - 4. Physics environment of black hole
 - 5. Fundamental physics: Lorentz invariance, etc.

Next-generation of neutrino telescopes

(HUNT, NEON)

P-ONE (East Pacific Ocean) Medium: Deep-sea water Depth: ~ 2.6 km Volume: ~ 1 km³ String number: ~70

KM3NeT (Mediterranean Sea)Medium: Deep-sea waterDepth: ~ 3.5 kmVolume: ~ 1 km³String number: 115*2 blocks

Baikal-GVD (Lake Baikal) Medium: Deep-lake water Depth: ~ 1.4 km Volume: ~ 1 km³ String number: ~140

IceCube Gen-2 (South Pole)

Medium: Glacial ice Depth: ~ 2.5 km Volume: ~ 8 km³ String number: ~210 **TRIDENT (West Pacific Ocean)** Medium: Deep-sea water Depth: ~ 3.5 km Volume: ~ 8 km³ String number: ~1000

Wei Tian (TDLI)

0

-

 \bigcirc

TRopIcal DEep-sea Neutrino Telescope (TRIDENT)

TRIDENT location (~ $114.0^{\circ}E, 17.4^{\circ}N$) :

All-sky scanning of astrophysical neutrinos:

Detector layout of TRIDENT

Water depth: ~3500m

Number of strings: ~1000 (20 hDOMs per string) Inter-string distance: 70m/110m, Inter-DOM distance: 35m

Detection Volume: ~8 km³

Penrose-tiling geometry:

- 1. Avoid corridor events
- 2. Balance track/cascade events
- 3. Paths for underwater-maintenance

hybrid Digital Optical Module (hDOM)

TRIDENT hDOM: PoS ICRC2023 (2023) 1213

TRIDENT SiPM: JINST 19 (2024) 06, P06011

Pixelized PMT + SiPM layout:

- 1. 4π photon coverage (+10% by SiPM)
- 2. Better SPE time resolution (without magnetic shielding)
- 3. PMT coincidence trigger for K40/dark noise
- 4. Photon distribution on hDOM surface

TRIDENT Pathfinder experiment (2021)

*** TRIDENT Explorer (T-REX)**

*** T-REX deployment (depth of 3420m)**

T-REX apparatus

Experiment goals:

- **1. Optical properties**
- 2. Oceanographic conditions
- 3. Radioactivity (K40 decay)
- 4. Prototype test at 35MPa

Light Receiver Module A&B :

Two systems: **PMT** and **Camera** systems Synchronization :White Rabbit (< 1ns) (*PMT: JINST 19 (2024) 05, P05040, Camera: arXiv:2407.19111)*

Light Emitter Module :

Three wavelengths: 405nm, 460nm, 525nm Pulsing mode (PMT) & Steady mode (Camera) (*Light source: NIM-A 1056 (2023) 168588*)

Optical calibration in water-based neutrino telescopes

The canonical optical parameters: **

Absorption length (λ_{abs}) ~ photon loss

Scattering length (λ_{sca}) ~ photon deflection

Rayleigh scattering (λ_{Ray}) : Mie scattering $(\lambda_{Mie}, \langle cos \theta_{Mie} \rangle)$:

Attenuation length (λ_{att}):

$$I(L) = I_0 \cdot e^{-\left(\frac{L}{\lambda_{abs}} + \frac{L}{\lambda_{sca}}\right)} = I_0 \cdot e^{-\frac{L}{\lambda_{att}}}$$

Wei Tian (TDLI)

** Cherenkov waveband in water medium

- ** **Extra challenge in optical calibration:**
 - **Dynamic water medium**
 - 2. **Time-varying optical properties**
 - Non-uniformity in large volume/different depths 3.
 - **Bio-activity / Sedimentation** 4.

The commonly-used optical calibration methods

PMT + Pulsing light source:

(Antares-2004, KM3NeT-LAMs, P-ONE Straw-a)

- 1. Must work under single-photon mode
- 2. Hours-long data accumulation
- 3. Hard to separate the direct photons, " $\lambda_{eff,att}$ "

Specialized laser facility:

(KM3NeT-AC9, Baikal-5D)

- 1. Nice precision of canonical optical parameters
- 2. Need extra calibration/deployment
- 3. Localized measurement

The camera system and its control module

Camera + Isotopic steady light source:

- 1. O(~0.05s) exposure time: Real-time calibration
- 2. ~8cm size: Integrated in DOMs, across the detector
- 3. Other applications: Environment & Self-monitoring
- 4. **Robustness:** no need for precise synchronization

Control & DAQ module : Raspberry 4Pi & FPGA

- 1. Two additional sensors for DOM monitoring
- 2. Real-time data transmission/ Remote operation

Wei Tian (TDLI)

Camera settings during the data taking process

Optical measurement strategies of the camera system

***** Exclude scattered light by viewing angle:

Direct light:
$$I_{dir}(R) = I_0 \cdot e^{-(\frac{R}{\lambda_{abs}} + \frac{R}{\lambda_{sca}})} = I_0 \cdot e^{-\frac{R}{\lambda_{at}}}$$

Camera (direction, pixel)

The I_{center} method for λ_{att} measurement

Solution Using the mean gray value of the Centroid Pixel:

Pixel (Exclude scattered light by a small angle) Within a unit solid angle: $I_{dir}(R) = I_0 \cdot e^{-\frac{R}{\lambda_{att}}}$

*I*_{center} method:
$$\lambda_{att} = -(L_A - L_B)/\ln(-\frac{I_A}{I_B} \cdot \frac{I'_0}{I_0})$$

 $(\frac{I'_0}{I_0}$ indicates the non-uniformity of the light source)

Verification of the *I_{center}* method

χ^2 fitting method for λ_{att} , λ_{abs} , λ_{sca} measurement

- **Comparing the gray value distribution of Real & Geant4 Simulated images:**

Wei Tian (TDLI)

Calibrate the cameras in deep-sea temperature

Calibrate the emission PDF of the T-REX light source

Camera response calibration

✤ Distortion test in long distance

***** Focal length recalibration in water

An extra 'lens' caused by curvature of glass vessel

Remote operation of the camera system

✤ Deep sea operation:

Depth 3420m, wavelength 460nm, 0.05s gain08

Optical measurement results from T-REX

PMT (at ~ 450 nm, ~ 50 minutes)							
Method	$\lambda_{ m abs}~[{ m m}]$	$\lambda_{ m ray} [{ m m}]$	$\lambda_{ m mie}[m m]$	$\cos heta_{ m mie}$	$\lambda_{ m att} [{ m m}]$	$\lambda_{\rm att, eff} \ [m]$	
χ^2 fitting	$27.4^{+1.1}_{-0.9}$	200^{+13}_{-10}	84^{+12}_{-8}	$0.97\substack{+0.02 \\ -0.02}$	$18.7^{+3.0}_{-2.1}$	25.2 ± 3.7	
MCMC	$26.4^{+1.2}_{-1.0}$	203^{+15}_{-11}	64^{+12}_{-14}	$17.2^{+0.8}_{-1.3}$	20.2 ± 0.1		
		Camera (at	\sim 460 nm,	$\sim 8 { m minutes}$	5)		
Method	$\lambda_{ m abs}~[{ m m}]$		$\lambda_{ m sca} \ [m m]$	$\lambda_{ m att} [{ m m}]$	$\lambda_{ m att,eff} \; [{ m m}]$		
χ^2 fitting	26.5 ± 0.5		26.8 ± 2.8				
$I_{ m center}$	$\lambda_{\rm att} = 19.3 \pm 1.3$ 20.8 ± 2.8						
Wavelengths [nm] Depth [m]					$\lambda_{ m att}$ [m]		
460	1221					17.8 ± 1.1	
460	2042					18.7 ± 1.2	
460	3420 19.3 ±					19.3 ± 1.3	
525	3420 14.6					14.6 ± 0.7	
405	405 3420 13.7 ± 0.6					13.7 ± 0.6	

Effective model: $I(L) \approx I_0 \cdot \frac{A}{4\pi L^2} \cdot e^{-L/\lambda_{eff,att}}$ Refined model: $I(L) = I_0 \cdot e^{-\frac{L}{\lambda_{abs}}}, \overline{L}(L, \lambda_{Mie}, \lambda_{Ray}, \langle \theta_{Mie} \rangle)$ (TRIDENT camera: arXiv:2407.19111)

A preliminary timeline for TRIDENT

T-REX

10 strings, 200 hDOMs 200km electric-optical cable

All-flavor neutrino detection in TRIDENT

Tau neutrino simulation:

PMT & ADC characterization in waveform simulation

PMT characterization Hamamatsu-CR519 PMT Response Curve 4000 Voltage[mV] eg 3000 S.P.E template **non-linear response** Original Points Fitted Curve, R-squared=0.9998 Saturated at 4539.6 photons 4000 10000 12000 14000 20 40 120 140 0 2000 6000 8000 Ó 60 80 100 Incident photon number time[ns] **SPE** waveform template **PMT non-linear response Transit Time Spread (1.8 ns)** After-pulsing rate ($\sim 1\%$ in 1µs) Quantum Efficiency (~28%) Dark Count Rate (~300Hz)

ADC characterization

Three levels for v_{τ} identification

***** A typical tau neutrino event (CC interaction) in TRIDENT:

DOM-level waveforms & Double Pulse waveform

DOM-level double pulse waveform from NuTau CC PMT stacking Job0, Event_id=180, hDOM_id=5644, E NuTau=100.1 TeV, Decay len=7.83m, E Tau=83.5TeV, v_{τ} PMT id = 13L OA=35.5m, $\cos=0.37$, delta T= $\overline{2}0$ ns - Complete Wf 400 --- DIS hits num = 139 Vertex 1: --- TauDecay hits num = 202**CC** interaction 300 PMT id = 14[mV] $\nu_{ au} ightarrow au^-$ Complete WL P **TRIDENT hDOM** Voltage 200 100 PMT id = 26Vertex 2: 0 **Tau Decay** 200 250 300 350 400 100 150 $\rightarrow e^{-}$ $ightarrow \pi^{0/\pm}$ 400 600 20 Slope PMT id = 25-20150 200 250 300 350 400 100 Time [ns] v_{τ} **TRIDENT hDOM** ...

Wei Tian (TDLI)

Parameters in Double Pulse Algorithm (DPA)

Level 1: Pre-cuts

- 1. Total hits number >= 50
- 2. Triggered DOM number >= 5

Level 2: Double Pulse Algorithm

1. Peak Voltage threshold >= 50 mV (~10 P.E)

Wei Tian (TDLI)

Double Pulse NuTau examples *(a)* **100TeV**

DOM-vertex distance is (m) 31.68998936015759 cos_theta is 0.5708957640611657 Tau_decay_len is (m) 22.853077741728573 Energy_asymmetry is (E1-E2)/(E1+E2) -0.929506172917025 Tau_decay_type is -211.0 Tau_energy is (TeV) 96.4937734375 NuTau_energy is (TeV) 100.0191393962952 DP_hDOM_id 4603 DP hDOM photons 330.0

DOM-vertex distance is (m) 87.08125785363386 cos_theta is 0.8183215318472292 Tau_decay_len is (m) 1.7451686367946955 Energy_asymmetry is (E1-E2)/(E1+E2) -0.46891943538757885 Tau_decay_type is 13.0 Tau_energy is (TeV) 73.499921875 NuTau_energy is (TeV) 100.07345549976581 DP_hDOM_id 13132 DP_hDOM_photons 102.0

DOM-vertex distance is (m) 32.803740762943754 cos_theta is 0.5352488581447665 Tau_decay_len is (m) 7.8044109333218055 Energy_asymmetry is (E1-E2)/(E1+E2) -0.7935163101563747 Tau_decay_type is 310.0 Tau_energy is (TeV) 89.7155703125 NuTau_energy is (TeV) 100.04433169016211 DP_hDOM_id 4392 DP hDOM photons 819.0

"Double Pulse" NuE examples @ 100TeV

DOM-vertex distance is (m) 22.503307646104563 cos_theta is -0.7964778843700554 NuE_energy is (TeV) 100.08168891518315 DP_hDOM_id 6885 DP hdom photons: 221.0

DOM-vertex distance is (m) 25.794190719968654 cos_theta is -0.653792703560148 NuE_energy is (TeV) 100.05135916088857 DP_hDOM_id 7567 DP hdom photons: 205.0

DOM-vertex distance is (m) 22.928976066429097 cos_theta is -0.6359760188329503 NuE_energy is (TeV) 100.0791925368603 DP_hDOM_id 15945 DP hdom photons: 271.0

Waveform examples under different ADC sampling rates:

For fixed 100TeV NuTau & NuE (10k events, fixed random seed)

	:nary					
	NET prelimit	500MHz	250MHz	125MHz	100MHz	50MHz
TRID	NuTau CC	140/10k	253/10k	260/10k	261/10k	134/10k
	NuE CC	5/10k	22/10k	24/10k	25/10k	30/10k

DPA efficiency and expected event rate in TRIDENT

@125MHz	1TeV	10TeV	50TeV	100TeV	500TeV	1-100TeV	100TeV-1PeV
NuTau CC	0/10k	8/10k	57/10k	260/10k	1247/5k	10/10k	1193/9k
NuE CC	0/10k	0/10k	10/10k	24/10k	58/5k	4/10k	53/10k

Assumed an isotropic diffused flux : [IceCube: Arxiv 2402.18026]

$$\Phi_{Astro}^{per-flavor} = 1.68 \times (\frac{E_{\nu}}{100TeV})^{-2.58} \times 3 \times 10^{-18} GeV^{-1}s^{-1}cm^{-2}sr^{-1}$$

Expected double pulse events per year in TRIDENT :

	1-100TeV	100TeV-1PeV	>1PeV (not yet)
NuTau CC	0.60 ± 0.51	$\textbf{3.98} \pm \textbf{0.15}$	(~0.75)
NuE CC	0.27 ± 0.21	0.12 ± 0.03	prelimine (~0)
		TRIDING	

Tau neutrino identification by Graph Neural Networks

TRIDENT-Net: a GNN-based point cloud for event identification (PoS ICRC2023 (2023), 1092) **

A typical double pulse NuTau event

Wei Tian (TDLI)

5**0**0

MC dataset: Training set (70%) + Test set (20%) + Apply set (10%)

[10TeV, 100TeV] GNN model

Flavor	Injection Volume	Event Number
$ u_{ au}$ CC	hh=200m, R=1000m	100k
v_e CC	hh=200m, R=1000m	100k

[100TeV, 1PeV] GNN model

Flavor	Injection Volume	Event Number
$ u_{ au}$ CC	hh=100m, R=500m	~20k
$ u_e$ CC	hh=100m, R=500m	~20k

(Need further optimization & more MC data ...)

Summary

- **IceCube**'s observation leads the dawn of neutrino astronomy.
- **TRIDENT** is a 8km3 neutrino telescope with 1000 strings, 20,000 hDOMs.
- **TRIDENT Pathfinder experiment** was successfully conducted in 2021 for site selection
- The T-REX Camera System demonstrated a Real-time Optical Calibration tool in deep sea
- By using **Double Pulse Algorithms** for NuTau identification in TRIDENT, ~5 NuTau CC/year
- We are also exploring using GNN for NuTau identification, need further optimization

Thanks for listening!

Physics potential of TRIDENT by v_{μ} events

*** Detection sensitivity of neutrino flux:**

Discovery potential for different sources:

Oceanographic conditions

 40 *K* decay activity : 11101 ± 119 Bq/m³

Ship towing tank experiment in SJTU

	West Pacific	Mediterinian	East Pacific
${}^{40}K$ radio acticity (\mathbf{Bq}/m^3)	11101 ± 119	13700 ± 200	12526 ± 752
Experiment	TRIDENT	ANTARES	P-ONE

3. TRIDENT Pathfinder experiment

• **PMT** : quick measurement of λ_{abs} :

```
Data re-weight: 1/L^2 \cdot e^{-ct_i/\lambda_{abs}}
```

***** PMT: Global χ^2 fitting for all parameters:

with Geant4:
$$\chi^2 = \sum_{i=1}^{N} \frac{[M_i - T_i(1 + \sum_{k=1}^{K} \epsilon_k)]^2}{\sigma_{Mi}^2 + \sigma_{Ti}^2} + \sum_{k=1}^{K} \frac{\epsilon_k^2}{\sigma_k^2}$$

