Cavendish Tests of Millicharged Relics

Asher Berlin (Fermilab)

University of Wisconsin–Madison, March 3, 2025

AB, Zach Bogorad, Peter Graham, Hari Ramani (in progress) AB, Hongwan Liu, Maxim Pospelov, Hari Ramani (arXiv:2302.06619) $\Omega_{\chi} \equiv \rho_{\chi} / \rho_{\rm cr} \, \big|_0 \ll 1$

Dark Matter Subcomponent

 $\left(\Omega_{\chi} = f_{\rm dm} \; \Omega_{\rm dm} \sim 0.25 \times f_{\rm dm}\right)$

Why a subcomponent?

$\Omega_{\chi} \equiv \rho_{\chi} / \rho_{\rm cr} \, \left|_{0} \ll 1 \right.$

Dark Matter Subcomponent

$$\left(\Omega_{\chi} = f_{\rm dm} \, \Omega_{\rm dm} \sim 0.25 \times f_{\rm dm}\right)$$

Thermal Relic $f_{\rm DM}\gtrsim 10^{-10}\times (m_\chi/{\rm GeV})^2 ~~{\rm (perturbative unitarity)}$

Griest, Kamionkowski, Phys. Rev. Lett. (1990)

• Low Reheat $f_{\rm DM} \propto e^{-2m_\chi/T_{\rm RH}} \qquad (m_\chi \gg T_{\rm RH})$

Berlin, Liu, Pospelov, Ramani, arXiv:2110.06217

 $\boldsymbol{+}$ model-dependent modifications from the local environment

Gaps in Coverage

Dark Matter Subcomponent

 $E_\chi\sim 300~{\rm K}\sim 25~{\rm meV}\ll {\rm typical~thresholds}$

 $a \ detectable \ example = new \ particles \ with \ small \ effective \ charge \ (millicharge)$

Cavendish Tests of Millicharged Relics

- 2. Terrestrial Density
- 3. Cavendish

The visible universe is governed by a rich spectrum of forces and particles. Analogous long-ranged force that couples to dark matter?

Do they also couple to normal matter?

equivalence principle tests: $g_{\rm SM} \lesssim 10^{-2} \times \frac{m_e}{m_{\rm pl}} \sim 10^{-24}$

The visible universe is governed by a rich spectrum of forces and particles.

Analogous long-ranged force that couples to dark matter?

Do they also couple to normal matter?

couples through known long-ranged force \Rightarrow relatively unconstrained

surface/underground direct detection sensitive to DM subcomponents $f_{\rm DM} > 10^{-8}$

local phase space is significantly modified

Cavendish Tests of Millicharged Relics

AB, Hongwan Liu, Maxim Pospelov, Hari Ramani (arXiv:2302.06619)

large fraction thermalizes to $\sim 300~{\rm K} \sim 25~{\rm meV}$

outgoing evaporation flux above escape velocity

χ	 \rightarrow

buildup in density

 $\rightarrow \chi$

(virial)

accumulation

Accumulated equilibrium density of bound particles

<u>traffic jam</u>

Out of equilibrium density of recently thermalized particles

large fraction thermalizes to $\sim 300~{\rm K} \sim 25~{\rm meV}$

$$v_{\rm th}(T_{\oplus})/v_{\rm esc} \sim 10^{-1} \times \left(1 \ {\rm GeV}/m_{\chi}\right)^{1/2}$$

(gravitationally bound)

(virial)

buildup in density

accumulation

Accumulated equilibrium density of bound particles

traffic jam

Out of equilibrium density of recently thermalized particles

large fraction thermalizes to $\sim 300~{\rm K} \sim 25~{\rm meV}$

$$v_{\rm th}(T_{\oplus})/v_{\rm esc} \sim 10^{-1} \times \left(1 \ {\rm GeV}/m_{\chi}\right)^{1/2}$$

(gravitationally bound)

$$\langle n_{\chi} \rangle_{\oplus} \sim 10^{15} \text{ cm}^{-3} \times f_{\text{DM}} \left(\frac{1 \text{ GeV}}{m_{\chi}} \right)$$

After diffusing throughout the Earth, particles settle into hydrostatic equilibrium

large fraction thermalizes to $\sim 300~{\rm K} \sim 25~{\rm meV}$

outgoing evaporation flux above escape velocity

(virial)

buildup in density

 $\rightarrow \chi$

accumulation

Accumulated equilibrium density of bound particles

<u>traffic jam</u>

Out of equilibrium density of recently thermalized particles

Fluid Dynamics

light mediator \Rightarrow enhanced interactions at smaller temperatures

Traffic Jam (<< 1 GeV)

Traffic Jam (>> 1 GeV)

large terrestrial overdensities (compared to galactic) across a broad range of masses

Local densities can be reduced or enhanced if interaction (set by dark photon's mass) is sufficiently long-ranged

Earth's magnetic and electric fields relevant if:

$$(B_{\oplus} \sim 0.5 \text{ G} , \Delta V_{\oplus} \sim 0.5 \text{ MV})$$

$$r_{\rm gyro} \sim \frac{m_{\chi} v_{\rm vir}}{eq_{\chi} B_{\oplus}} \lesssim R_{\oplus} \implies q_{\chi} \gtrsim 10^{-8} \times (m_{\chi}/{\rm MeV})$$

 $300 \ {\rm K} \sim eq_{\chi} \times \Delta V_{\oplus} \implies q_{\chi} \gtrsim 10^{-7}$

Parametrize ignorance by focusing on sensitivity to local density, n_{χ}

How do you detect this terrestrial population?

distinguishing feature = penetrates shields

How do you detect this terrestrial population?

distinguishing feature = penetrates shields

e.g., anomalous heating of cold ions

Carney, Häffner, Moore, Taylor, arXiv:2104.05737 Budker, Graham, Ramani, Schmidt-Kaler, Smorra, Ulmer, arXiv:2108.05283

Cavendish Tests of Millicharged Relics

Coulomb's Law \Rightarrow zero field inside charged shell

empty shell of uniform surface charge

$$\frac{q_1}{q_2} = \frac{A_1}{A_2} = \frac{r_1^2}{r_2^2} \implies \frac{E_1}{E_2} = \frac{q_1/r_1^2}{q_2/r_2^2} = 1 \implies E_{\rm in} = 0$$

Coulomb's Law \Rightarrow zero field inside charged shell

<u> Gavendish ~1773</u>

H. Cavendish

<u> Cavendish ~1773</u> + + + + + + + + + + + + +

+

+

+ + + + + +

+

+

+

+

<u> Gavendish ~1773</u> + + + + + + + + $E_{\rm in} \neq 0$? +

<u> Cavendish ~1773</u>

<u> Gavendish ~1773</u>

H. Cavendish

<u> Gavendish ~1773</u>

H. Cavendish

(limited by systematic noise)

$$E \propto r^{-2(1\pm 10^{-2})}$$

<u>Plimpton and Lawton ~1936</u>

voltage $\varphi_0 \sim 3~{\rm kV}$ driven at frequency $\nu_0 \sim 2~{\rm Hz}$

limited by thermal fluctuations $\Delta \varphi_{\text{shells}} \sim 10^{-6} \text{ V}$

$$\left(E \propto r^{-2\,(1\pm 10^{-9})}\right)$$

non-zero photon mass

$$\varphi \propto \frac{e^{-m_{\gamma}r}}{r} , \quad \nabla \cdot \mathbf{E} = \rho - m_{\gamma}^2 \varphi$$

Ideal for slowly saturating signals (e.g., penetrating millicharges)

<u>Recap</u>

Large over terrestrial overdensity of cold (300 K) millicharges

Precise tests of Coulomb's Law/ Gauss's Law/photon mass

Cavendish + Millicharges

permeating plasma

Cavendish + Millicharges

permeating plasma

millicharges discharge the shell

 $m_{\gamma} \leftrightarrow m_D$

Analogous to photon mass

Generally holds for weakly-coupled plasma

 $m_{\gamma} \leftrightarrow m_D \times \text{enhancement}$ Analogous to photon mass, but enhanced by (collection time) / diffusion time)^{1/2}

 $m_{\gamma} \leftrightarrow m_D \times \text{enhancement}$

Analogous to photon mass, but enhanced by (collection time) diffusion time)^{1/2}

Cavendish + Millicharges

 $\rho_{\chi} \propto \exp\left(-\sqrt{\frac{x^2/2D_{\chi}}{\omega_0^{-1}}}\right)$

Exponentially suppressed if time to diffuse through experiment is longer than oscillation time

→ +x

lower frequency preferred

Recasted Limits

Comparison to Ion Traps

complementary sensitivity to modern ion traps

How to optimize with a dedicated setup?

(same noise levels as in 1936!)

<u>The Problem</u>

lower frequency \Rightarrow greater collection time **but** increased noise

Trap + Cavendish

 $1936 \ setup \\ + \ MV \ trap \ under \ high \ vacuum$

Cosmic Rays

 $irreducible\ terrestrial\ population$

Cosmic Rays

irreducible terrestrial population

effective (kinetic mixing) = no-coupling to Earth's E-field pure = trapped by Earth's E-field

Cavendish Tests of Millicharged Relics

- Terrestrial overdensities of dark matter subcomponents.
- Large gaps in coverage motivate alternative detection strategies.
- Old experiments provide powerful limits.
- Simple dedicated setups can probe unexplored theory space.
- Application to other models? Better analogous tests?

H. Cavendish

