
ü HW #4 Solutions

Here is a trick for defining positive constants. Whenever Simplify or Integrate are used, these assumptions will be applied.

In[33]:= $Assumptions = 8— > 0, m > 0, w > 0, l > 0<

Out[33]= 8— > 0, m > 0, w > 0, l > 0<

Since we will be calculating DxDp several times over, it is convenient to define a general function for doing so.  The Module
command allows a function to use a number of different intermediate steps before returning its final value.  In this case, the
values of Yx2]  ,  Xx\,  and  Yp2] are first calculated and put in the local variable xsq, xx, and psq.  Then DxDp is  calculated from
those.

In[346]:= DxDp@psi_D := ModuleB8xsq, xx, psq<, 8xsq, xx, psq< =

IntegrateApsi 9x2 psi, x psi, -—2 D@psi, 8x, 2<D=, 8x, -¶, ¶<E

IntegrateApsi2, 8x, -¶, ¶<E
; Ixsq - xx2M psq

F

define the simple harmonic oscillator wavefunctions

In[6]:= sho@n_D := WithB:y =
x

—

m w

>, HermiteH@n, yD ExpA-y2 ë 2EF

ü Problem 1: uncertainty product for first 4 states of the harmonic oscillator

In[46]:= Table@DxDp@sho@nDD, 8n, 0, 3<D êê Simplify

Out[46]= :
—
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note that each successive state adds 1 — to the uncertainty product

ü Problem 2: repeat for the particle in a box. 

define the wavefunctions for the PIAB.  This uses the Piecewise function to define the wavefunctions everywhere.  

In[348]:= piab@n_D :=
0 x < 0

Sin@n p x ê lD 0 § x < l
0 x ¥ l

In[349]:= Table@DxDp@piab@nDD, 8n, 1, 4<D êê Simplify

Out[349]= :
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1

3
I-6 + p2M —,

1

6
I-3 + 2 p2M —,

1

2
-2 + 3 p2 —,

1

6
I-3 + 8 p2M —>

In[350]:= % êê N H*numerical values*L

Out[350]= 80.567862 —, 1.67029 —, 2.6272 —, 3.55802 —<

notice that the values are pretty close to those of the harmonic oscillator.  Each successive energy level adds a little less than 1 —.



ü Problem 3

note that the odd sho wavefunctions are solutions to the Schrodinger Eqn with y(0)=0, which is exactly what we need for this

problem.  Thus E=(2n+1+1/2)—w=(2n+3/2)—w.  The corresponding eigenfunctions are H2 n+1J
mw

—
xN ‰-

mwx2

2 — .

ü Problem 4

now define the half-harmonic oscillator wavefunctions

In[354]:= sho2@n_D :=

WithB:y =
x

—

m w

>, PiecewiseA99HermiteH@2 n + 1, yD ExpA-y2 ë 2E, y > 0=, 80, y § 0<=EF

In[359]:= Table@DxDp@sho2@nDD, 8n, 0, 3<D êê N êê Simplify

Out[359]= 80.583216 —, 1.49105 —, 2.37291 —, 3.24886 —<

ü Problem 5

In[362]:=
IntegrateAx sho2@9D2, 8x, 0, ¶<E

IntegrateAsho2@9D2, 8x, 0, ¶<E
êê Simplify êê N

Out[362]=
3.97634 —

m w —

classical solution:  x HtL = xT †sinwt|.  Classical turning pt at energy E is xT= 2 E
mw2

= 2 —wH2 n+3ê2L
mw2

= 39 —

m w
.

The time average is 

In[365]:= IntegrateB
39 —

m w

Sin@w tD
p

w

, :t, 0,
p

w
>F êê N

Out[365]= 3.97569
—

m w

which is amazingly close.  Both classical and quantum theories of harmonic oscillators give similar answers, except for the key
difference which is only certain energies being allowed.
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