s HW #4 Solutions

Here is a trick for defining positive constants. Whenever Simplify or Integrate are used, these assumptions will be applied.
in33= $Assumptions = {A>0, m>0, w>0, 1>0}
ouss= {A>0, m>0, w>0,1>0}

Since we will be calculating AXxAp several times over, it is convenient to define a general function for doing so. The Module
command allows a function to use a number of different intermediate steps before returning its final value. In this case, the

values of <x2> , {(x), and (pz) are first calculated and put in the local variable xsq, xx, and psq. Then AxAp is calculated from

those.

In346):= AXAp[psi_] := Module[{xsq, xx, psq}, {xsq, xx, psq} =

Integrate[psi {x®psi, xpsi, -a?D[psi, {x, 2}]}, {x, -, =}]

Inte .2 _ 7 \/ (xsq—xxz) psq
grate[p51 , {x, -, oo}]

]

define the simple harmonic oscillator wavefunctions

X

inel= sho[n_] := With[{y = }, HermiteH[n, y] Exp[—yz/z]]

= Problem 1: uncertainty product for first 4 states of the harmonic oscillator

in46:= Table[AxAp[sho[n]], {n, 0, 3}] // Simplify

h 3nh 5h 7h
Out[46]= {_r T _}
2 2 2 2

note that each successive state adds 1 7 to the uncertainty product
= Problem 2: repeat for the particle in a box.

define the wavefunctions for the PIAB. This uses the Piecewise function to define the wavefunctions everywhere.

0 x<0
in34g]= piab[n_] s= {Sin[nnx/l] 0< x<1
0 x2 1

in349)= Table[AxAp[piab[n]], {n, 1, 4}] // Simplify

1
(73+27r2) A, —\-2+37° n,

2

1 1
Out[349]= {—

— (-6+7%) n,
5 3< + 7%

o | -

Inss0]= % // N (*numerical valuesx)

outzs0)= {0.567862h, 1.67029h, 2.6272h, 3.55802 A}

notice that the values are pretty close to those of the harmonic oscillator. Each successive energy level adds a little less than 1 7.
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= Problem 3

note that the odd sho wavefunctions are solutions to the Schrodinger Eqn with ¢(0)=0, which is exactly what we need for this

2
mwx*

problem. Thus E=(2n+1+1/2)fiw=(2n+3/2)hw. The corresponding eigenfunctions are H, ,1+1(\/ m—;) x) e 2 .

m Problem 4
now define the half-harmonic oscillator wavefunctions

in3s54]= sho2[n_] :=

X

With[{y = }, Piecewise[{{HermiteH[Z n+1, y] Exp[—y2/2] ' Y > 0}, {0, v < 0}}]]

h

mw

in3s59):= Table[AxAp[sho2[n]], {n, O, 3}] // N // Simplify
outizs9l= {0.583216 A, 1.49105 A, 2.37291 A, 3.24886 h}

= Problem 5

Integrate[x sho2[9]2%, {x, O, oo}]
In[362]:= // Simplify // N
Integrate[sh02[9]2, {x, 0, oo}]

3.97634 n
out[3e2]= —————
Vmowh
classical solution: x (¢) = xy|sinwtl. Classical turning pt at energy E is xT=\/2—E2 = \/w =\/ L
muw mw mw

The time average is

39A Sinfwt] b
In[365]:= Integrate[ - ’ {t, o, —}] // N
mw = (7]
w
h
out365]= 3.97569 —_—
mw

which is amazingly close. Both classical and quantum theories of harmonic oscillators give similar answers, except for the key
difference which is only certain energies being allowed.




