The radial Hamiltonian for the Hydrogen atom with orbital angular momentum
quantum number [ is
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We wish to find the energies E;,_; and corresponding wave functions P, _;(r). Itis
convenient to define a radial quantum number n,. which is equal to the number of

nodes in the wavefunction.

For small r, the wavefunctions must be proportional to r'*1. Atlarge r, they must

decay as e ™", where k = \/—2uE /h?. The lowest energy level for any I must have
no zero crossings. Thus an educated guess for the wave function for the lowest
energy level for a given [ is

T
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If we plug this into the Schrodinger equation, as in the accompanying Mathematica

notebook, we find
r
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For this to hold at any r, each power of r in the numerator must individually vanish.
Thus
-—2a(1+1)nr?+2a%2e?p==0,rn?+2a%rsyu =
which has the solution
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where the Bohr radius is ag = A% /pe? and the Rydberg constant is Ry = pe*/2h?.
We now have the lowest energy level and its wavefunction for each L.

a = (l + 1)0.3, EO,l =

Now we want to find the excited state energy levels. We will use a trick similar to
the raising and lowering operators for the harmonic oscillator. We define a
“superpotential”
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and we define operators
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then we can show (see Mathematica)



h? ¥

ﬂAl Ay =H, - Ey
hZ
2u

Now we wish to show that AJanr,l+1 =Py y1pand Ey 41, = E, 141. The creation

operator adds a node to the wavefunction and reduces its angular momentum, but

keeps the energy the same.
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AIAZF = Hyyq1 — Eg;

Let us operate H; on ATP, .
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= A;I— (ﬂ AIA-lI— + E01> Pnr,l+1 )

= AjHl+1PnT,l+1 = Enr,l+1AZrPnr,l+1
Therefore A*Pnr,l+1 is an eigenfunction of H; with eigenvalue E;, ;,,. We therefore
have
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The action of the operator A;r gives us a new eigenstate of one less [, and one greater
n,. Defining the principal quantum number n = n,. + [ + 1, it follows that the
energy levels of the hydrogen atom energy levels are

Eny=—-—— 8)

and the eigenfunctions can be generated by successively operating on P, (r):

Py(r) = AI "'Ajl—?)A‘-rl_l—ZPOn—l(r) 9)

where A;r is the lowering operator corresponding to superpotential W;.



hydrogen atom Hamiltonian

- h? 721 (1+1) e?
ne77i= Hy [£_] := — D[f, {r, 2}] +—— £-— £
2 2 ur? r
Schrodinger equation
ine7el= Sch[f_] :=H,@f ==& £
In279):= Sch[PO[r]]
e?P0[r] 1 (1+1)An%2P0[r] hH%2P0"[r]

outi279)= — n
r 2r?yu 2u

= &P0[r]

educated guess for the ground state wavefunctions for different /s

nize0)= Sch[r'*t e ¥/?] /7 simplify
e ar? <72a (1+1) A2 +rh?+2a? (e2+r8) ].1)
Out[280]= =0
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to satisfy for all r, each power of r must separately vanish
In[281]:= Solve[{—z a(l+1l) n?+2a?%e? u=0, r h? +2a? réu == 0}, {a, 8}]

(1+1) h? e u
out[281]= {{aei, &5 _7}}
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so the n,=0 energy levels for arbitrary / are
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define “superpotential”
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define operators analogous to SHO raising and lowering operators
in2s7;= Ay [£_] :=D[f, r] +W[r] £

in2se= Aty [£_] := -D[f, r] +W;[r] £

Show that ATA and AAT are equal to H; — Ey;and Hy,1 — Eg 3

hZ
In289l= |— At;@A;@P[r] == H;@P[r] -EO[1] P[r]| // Simplify
2

outj289)= True
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h2
n290}= |— A;@At;@P[r] == H;,;@P[r] -EO[1] P[r]| // Simplify
2y

outj290)= True

now in terms of the principal quantum number n:

etu
in29i]= Enl[n_, 1_] s= -———
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nze2)= P[n_, 1_] := Module[{POl = PO[n-1]}, Do[POl = At,,@P01, {lp, n-2, 1, -1}]; PO1]

verify that the wavefunctions satisfy the Schrodinger eqn, and print them out. They are unnormalized.
In[299]:= With[{n =17, 1 =10}, Print[ (H;@P[n, 1] ==Enl[n, 1] P[n, 1]) // Simplify];
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