University of Wisconsin-Madison

Quantum "LEGO" in 2D flatland

2D materials and van der Waals heterostructures

Tiancheng Song Department of Physics UW-Madison

2D materials with van der Waals bonding

Stack of paper

Stack of graphene

The first 2D material: Graphene!

Evolution of 2D materials

A. K. Geim et al., Nature (2013).

Versatile platform

Building van der Waals heterostructures

A. K. Geim et al., Nature (2013).

Tuning carrier density

Twisting two layers

- Discovery of **2D magnets**
- Van der Waals spintronics
- Layer stacking-dependent magnetism
- Twisted 2D magnets → magnetic moiré

2D superconductor + topological insulator

- 2D topological insulator
- Gated-tunable 2D superconductivity

Challenge

These new 2D materials are mostly air-sensitive (chemical instability)

Discovery of 2D magnets

First 2D magnet chromium triiodide (**Crl**₃)

Layered-antiferromagnetic bilayer

Spintronic devices

Van der Waals spintronics?

T. Song et al., Science (2018).

Bilayer Crl₃ is **desirable** for spin-filter MTJ

 $\mu_0 H = 0$

Large resistance (R_{ap})

Atomically thin MTJ

First demonstration of all-vdW spintronics

Thinnest magnetic tunnel junction

Trilayer TMR > 2,000%

Record high TMR!

T. Song et al., *Science* (2018). **T. Song** et al., *Nano Letters* (2019).

Four-layer TMR > 57,000% , but Why?

16

BN

- G

BN

Blessing of vdW nature

Reduce interlayer spacing

Lateral interlayer shift

Twist two layers

Determined by vdW interface

T. Song et al., *Nat. Mater.* (2019). T. Li et al., *Nat. Mater.* (2019).

Piston-cylinder pressure cell

Ероху

Stage

Up to 3 GPa

Enhance AFM interlayer coupling?

T. Song et al., *Nat. Mater.* (2019). T. Li et al., *Nat. Mater.* (2019).

"Bonus" discovery

Mystery solved

T. Song et al., *Nat. Mater.* (2019). T. Li et al., *Nat. Mater.* (2019).

Layer stacking **identified** by Raman spectroscopy

23

Summary

Reduce interlayer spacing

Enhanced AFM coupling

Lateral interlayer shift

Twist two layers

Moiré in everyday life

Twist two layers \rightarrow moiré superlattice

Emergent phenomena in moiré superlattices

and many more...

Emergent phenomena in moiré superlattices

Based on **non-magnetic** materials

Graphene

Dichalcogenides

Boron nitride

What about moiré superlattices formed

by twisting 2D magnets

Twisted 2D magnet

Nanoscale magnetic moiré

New pathway towards **nanoscale magnetic textures** and **new spintronic devices**

Twisted 2D magnet

Probing magnetism in 2D materials at the nanoscale with single-spin microscopy

L. Thiel¹, Z. Wang^{2,3}, M. A. Tschudin¹, D. Rohner¹, I. Gutiérrez-Lezama^{2,3}, N. Ubrig^{2,3}, M. Gibertini^{2,4}, E. Giannini², A. F. Morpurgo^{2,3}, P. Maletinsky¹*

Spatial resolution ~50 nm

Monolayer Crl_3 magnetization ~15 μ_B/nm^2

T. Song et al., Science (2021).

Periodic **AFM-FM** domains

Agree well with the simulation

Moiré periodicity (~150 nm)

Clear six-fold symmetry

Spatial resolution ~50 nm

- Discovery of **2D magnets**
- Van der Waals spintronics
- Layer stacking-dependent magnetism
- Twisted 2D magnets → magnetic moiré

2D superconductor + topological insulator

- 2D topological insulator
- Gated-tunable **2D superconductivity**

Monolayer tungsten ditelluride (Td-WTe₂)

2D topological insulator

Z. Fei et al., *Nat. Phys.* (2017). S. Wu et al., *Science* (2018). Y. Shi et al., *Sci. Adv.* (2019).

Real-space imaging of 2D TI

A big surprise: 2D superconductivity

Superconductivity

Topology

Dilution refrigerator

- Base temperature 8 mK
- 9T-1T-1T vector magnet

Surprising 2D superconductivity

Electronic phase diagram

A new sensitive probe: vortex Nernst effect

Nernst signal \rightarrow vortex motion

- Vortices are "pin-holes" in the superfluid
- $-\nabla T \rightarrow \text{flow of vortices} \rightarrow \text{phase slippage}$
- Josephson effect \rightarrow voltage (Nernst signal)

N. P. Ong et al., PRB (2006).

F. Wells et al., *Sci. Rep*. (2014).

T. Song et al., Nature Physics (2024).

V_N detects mobile vortices (superconducting fluctuations)

Resistance vs Vortex Nernst

- **Direct comparison** between resistance and vortex Nernst
- Vortex Nernst survives well above B_{R,90%} (?)

High magnetic field

 $V_{\rm N}$ (nV)

500

10¹

10²

T. Song et al., Nature Physics (2024).

Resistance vs Vortex Nernst

New opportunities

Acknowledgements

Thank you for your attention!

Acknowledgments

Sanfeng Wu

Leslie Schoop

Nai Phuan Ong

Robert Cava

Experiment: Yanyu Jia, Pengjie Wang, Guo Yu, Yue Tang, Ayelet Uzan, Michael Onyszczak

WTe₂ crystal: Ratnadwip Singha, Xin Gui hBN crystal: Kenji Watanabe, Takashi Taniguchi

David Cobden

Di Xiao

Michael McGuire

Experiment: Qi-Chao Sun, Eric Anderson, Xinghai Cai, Zaiyao Fei

Theory: Ting Cao, Matisse Tu, Chong Wang, Jimin Qian

Pressure study: David Graf, Cory Dean, Matthew Yankowitz

Xiaodong Xu

Jörg Wrachtrup

University of Wisconsin-Madison

- **Top public research** university founded in 1848 (Big Ten).
- UW-Madison Physics Program is **ranked #17** in U.S. News.
- Capital of the state, beautiful and safe city with **five lakes**.

We are hiring!

High stipend and guaranteed TA/RA position.

2023-24 Graduate Assistant Compensation Total: \$52,746 - \$66073

Questions?

Tiancheng Song

tsong47@wisc.edu

