

Lab tours:

	Tuesday			Wednesday		Thursday	
2.20 014	Lab Tour: Eriksson Lab /Yavuz			Lab Tour: Song Lab		Lab Tour: Choy Lab	
4:00 PM	Lab Lab Tour: McDermott Lab /Kuzmin Lab			<u>/Brar Lab</u> Lab Tour: Saffman Lab		/Kats Lab (Engineering) Lab Tour: Wang Lab (Engineering)	
Meeting point	3 30pm 4 00pm	by elevator 5th floor Cha	mberlin	3 30pm	Chamberlin lobby (University Av exit)	3 30pm	Chamberlin lobby (University Av exit)
Wifi: eduroam							
Lunch and Coffee: Hallway behind lecture hall 8 45 am							
Dinner Steenb	for re	gistered p on Orcharc	articip d, toda	oants: .y, rece	ption at 5 45 p	m	

Lectures (@ Chamberlin 2223, backup Sterling 1310) Tuesday

9am

König Overview

11am

Perkins Quantum spin liquids

2pm

Perkins **Kitaev Materials**

Wednesday

Thursday

Kuzmin Song Quantum LEGO Superconducting gbits (exp)

Vavilov **Esterlis** Superconducting qbits (th) Quantum sensing

Levchenko Quantum transport

Elio J. König University of Wisconsin-Madison | Aug 27, 2024 the era of the 2nd quantum revolution What is quantum science good for?

domestication of quantum physics

the era of the 2nd quantum revolution What is quantum science good for?

2nd quantum revolution

domestication of quantum physics

the era of the 2nd quantum revolution What is quantum science good for?

and quantum revolution

quantum physics

the era of the 2nd quantum revolution What is quantum science good for?

2nd quantum revolution

domestication of

quantum physics

RuCl₃: candidate Quantum Spin Liquid: Matsuda et al, Nature (2018).

the era of the 2nd quantum revolution What is quantum science good for?

2nd quantum revolution

domestication of

domestication of quantum physics

RuCl₃: candidate Quantum Spin Liquid: Matsuda et al, Nature (2018).

the era of the $2^{n}d$ quantum revolution What is quarkum science good for?

 $\mathcal{F}_{XEB} = 1$

2nd quantum revolution

quantum computing

Quantum chip: Google Quantum, Science (2021)

 $\mathcal{F}_{XEB} = \mathbf{0}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

domestication of quantum physics

RuCl₃: candidate Quantum Spin Liquid: Matsuda et al, Nature (2018).

the era of the $2^{n}d$ quantum revolution What is quantum science good for?

 $\mathcal{F}_{XEB} = 1$

 $\mathcal{F}_{XEB} = 0$ \mathcal{F}_{XEB} 1st Agricultural \mathcal{F}_{XEB} Revolution 10000 BCE take control of biosphere

adapt it to human needs

2nd quantum revolution

quantum computing

Quantum chip: Google Quantum, Science (2021)

quantum materials

natural occurrence inspires / is emulated by man-made system

RuCl₃: candidate Quantum Spin Liquid: Matsuda et al, Nature (2018).

the era of the $2^{n}d$ quantum revolution What is quarking science good for?

 $\mathcal{F}_{\text{XEB}} = 1$

 $\mathcal{F}_{XEB} = 0$ \mathcal{F}_{XEB} 1st Agricultural Revolution 10000 BCE take control of biosphere

adapt it to human needs

quantum computing

Quantum chip: Google Quantum, Science (2021)

quantum materials

natural occurrence inspires / is emulated by man-made system

RuCl₃: candidate Quantum Spin Liquid: Matsuda et al, Nature (2018).

 $\mathcal{F}_{\text{XEB}} = 1$

 $\mathcal{F}_{XEB} = 0$ $\mathcal{F}_{\mathsf{XEB}}$ 1st Agricultural Revolution 10000 BCE take control of biosphere

adapt it to human needs

quantum computing

Quantum chip: Google Quantum, Science (2021)

the era of the 2nd quantum revolution What is quarking science good for?

RuCl₃: candidate Quantum Spin Liquid: Matsuda et al, Nature (2018).

the era of the 2nd quantum revolution What is quarking science good for?

" $\mathcal{F}_{x_{EB}}$ " Quantum technology seeks to harness the peculiar \mathcal{F}_{AB} of \mathcal{F}_{XEB} quantum mechanics for processing information, to develop new kinds of computers, communications networks, and sensors."

quantum computing

natural occurrence inspires / is emulated by man-made system

Quantum chip: Google Quantum, Science (2021)

(The Washington Post, Aug 18th, 2019)

$=2^n \langle P(x) \rangle_i - 1$ Aspects of quartum science

"
Quantum technology seeks to \mathcal{F}_{XEB} = \mathbb{P} harness the peculiar \mathcal{F}_{AB} of \mathcal{F}_{XEB} quantum mechanics for processing information, to develop new kinds of computers, communications networks, and sensors."

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

(The Washington Post, Aug 18th, 2019)

$=2^n \langle P(x) \rangle_i - 1$ Aspects of quartum science

"
Quantum technology seeks to \mathcal{F}_{XEB} = \mathbb{P} harness the peculiar flaws of $\mathcal{F}_{\mathsf{XEB}}$ quantum mechanics for processing information, to develop new kinds of computers, communications networks, and sensors."

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

(The Washington Post, Aug 18th, 2019)

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

 $=2^n \langle P(x) \rangle_i - 1$

quantum design

2D materials (twisted bilayer graphene): Efetov et al, Physics World (2019).

"
Quantum technology seeks to \mathcal{F}_{XEB} = \mathbb{P} harness the peculiar flaws of $\mathcal{F}_{\mathsf{XEB}}$ quantum mechanics for processing information, to develop new kinds of computers, communications networks, and sensors."

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

(The Washington Post, Aug 18th, 2019)

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

Matsuda *et al,* Nature (2018).

$=2^{n}\langle P(x)\rangle_{i}-1$ Aspects of Quartum science

<section-header>

2D materials (twisted bilayer graphene): Efetov *et al,* Physics World (2019). $\mathcal{F}_{\text{XEB}} = 1$

quantum computing and communication

Quantum Google Quantum, Science (

 $\mathcal{F}_{XEB} = \mathbf{0}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetor Maletinsky *et al.*, Physics World (

netry: 2019)

2D materials (twisted bilayer graphene): Efetov *et al,* Physics World (2019). $\mathcal{F}_{\mathsf{XEB}} = 1$

quantum computing and communication

Quantum Google Quantum, Science (

$=2^{n}\langle P(x)\rangle_{i}-1$ Aspects of Quarker Science

quantum sensing

Color center magnetor Maletinsky *et al.*, Physics World (

netry: 2019)

resource for computing error correction and quantum communication

exponential complexity

 $\dim(H) = 2^{N}$

exponential complexity

 $\dim(H) = 2^{N}$

quantum state determined by 2N numbers, classical state by Maletinsky et al Rembers

exponential complexity

 $\dim(H) = 2^{N}$

quantum state determined by 2N numbers, classical state by Maletinsky et al Rembers

exponential

complexity

 $\dim(H) = 2^N$

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{XEB} = \mathbf{0}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{XEB} = \mathbf{0}$ $\mathcal{F}_{\mathsf{XEB}}$ $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

Quantum Materials & forms of order

Quantum Materials & forms of order

"the simplest of definitions is that a quantum material is one whose electronic or magnetic properties are best described as having a nontrivial quantum mechanical origin " [R Cava, *et al.* "Introduction: Quantum Materials", Chem. Rev. (2021)]

Quantum Materials & forms of order

"the simplest of definitions is that a quantum material is one whose electronic or magnetic properties are best described as having a nontrivial quantum mechanical origin " [R Cava, *et al.* "Introduction: Quantum Materials" <u>Chem. Bev.</u> (2021)

superfluids and superconductors

[Superfluid He: A Leitner (BBC).

UTe₂: S Ran, ..., N Butch, Nature Phys (2019)]

"the simplest of definitions is that a quantum material is one whose electronic or magnetic properties are best described as having a nontrivial quantum mechanical origin " [R Cava, et al. "Introduction: Quantum Materials" Chem. Bev. (2021)

superfluids and superconductors

[Superfluid He: A Leitner (BBC).

UTe₂: S Ran, ..., N Butch, Nature Phys (2019)]

strange & bad metals & pseudogap

[cuprates: Proust, Taillefer, Annu. Rev. of CM Phys. (2019)]

0.3

"the simplest of definitions is that a quantum material is one whose electronic or magnetic properties are best described as having a nontrivial

chanical origin " [R Cava, et al. "Introduction: Quantum Materials" Chem. Bev. (2021)

superfluids and superconductors

[Superfluid He: A Leitner (BBC).

UTe₂: S Ran, ..., N Butch, Nature Phys (2019)]

[cuprates: Proust, Taillefer, Annu. Rev. of CM Phys. (2019)]

0.3

"the simplest of definitions is that a quantum material is one whose electronic or upgnetic properties are best described as having a nontrivial

chanical origin " [R Cava, et al. "Introduction: Quantum Materials" Chem. Rev. (2021)

superfluids and superconductors

[Superfluid He: A Leitner (BBC).

UTe₂: S Ran, ..., N Butch, Nature Phys (2019)]

[cuprates: Proust, Taillefer, Annu. Rev. of CM Phys. (2019)]

0.3

topological order

[FQH: Nakamura *et al*, Nature (2020) RuCl₃: Kasahara *et al* Nature (2018)]

"the simplest of definitions is that a quantum material is one whose electronic or upgnetic properties are best described as having a nontrivial

chanical origin " [R Cava, et al. "Introduction: Quantum Materials" Chem. Rev. (2021)

superfluids and superconductors

[cuprates: Proust, Taillefer, Annu. Rev. of CM Phys. (2019)]

topological order

[FQH: Nakamura *et al*, Nature (2020 RuCl₃: Kasahara *et al* Nature (2018

topologically topologically equivalent (but go well together)

> are topologically equivalent

topological order

[FQH: Nakamura *et al*, Nature (2020) RuCl₃: Kasahara *et al* Nature (2018)]

topological order

[FQH: Nakamura *et al*, Nature (2020) RuCl₃: Kasahara *et al* Nature (2018)]

topological order

[FQH: Nakamura *et al*, Nature (2020) RuCl₃: Kasahara *et al* Nature (2018)]

topological order

[FQH: Nakamura *et al*, Nature (2020) RuCl₃: Kasahara *et al* Nature (2018)]

[FQH: Nakamura *et al*, Nature (2020) RuCl₃: Kasahara *et al* Nature (2018)]

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{\text{XEB}}=0$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

$=2^{n}\langle P(x)\rangle_{i}-1$ Aspects of Quarker Science

 $\mathcal{F}_{\mathsf{XEB}}$

cuantum design\$\mathcal{F}_{XEB}\$=1\$\$\mathcal{F}_{XEB}\$\$\mathcal{F}_{TAEB}\$

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

 $\mathcal{F}_{XEB} = 0$ \mathcal{F}_{XEB} \mathcal{F}_{XEB}

quantum sensing

Color center magnetometry: Maletinsky *et al.*, Physics World (2019)

Quantum Design artificial Kondo lattice

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva, Nature (2013) twisted bilayer graphene: Jarillo-Herrero et al Nature (2018) STM on TaS₂: Liljeroth *et al* Nature (2021)]

Quantum Design artificial Kondo Lattice

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva, Nature (2013) twisted bilayer graphene: Jarillo-Herrero et al Nature (2018) STM on TaS₂: Liljeroth *et al* Nature (2021)]

Quantum dots

[3-channel Kondo device: Pierre *et al*, Science (2018) Si quantum dot: Eriksson, Joynt, Friesen et al Nat Comm (2022)]

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva, Nature (2013) twisted bilayer graphene: Jarillo-Herrero et al Nature (2018) STM on TaS₂: Liljeroth *et al* Nature (2021)]

Quantum dots

[3-channel Kondo device: Pierre *et al*, Science (2018) Si quantum dot: Eriksson, Joynt, Friesen et al Nat Comm (2022)]

artificial Kondo Lattice

Artificial materials

Anderson Localization superconductorof polaritons

[Polariton waveguides: J Bloch *et al*, Nat Phys (2020) Josephson junction chain: Kuzmin et al Nat Phys (2019)]

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva, Nature (2013) twisted bilayer graphene: Jarillo-Herrero et al Nature (2018) STM on TaS₂: Liljeroth *et al* Nature (2021)]

Quantum dots

[3-channel Kondo device: Pierre *et al*, Science (2018) Si quantum dot: Eriksson, Joynt, Friesen et al Nat Comm (2022)]

artificial Kondo lattice

Artificial materials

Anderson Localization superconductorof polaritons insulator transition

[Polariton waveguides: J Bloch *et al*, Nat Phys (2020) Josephson junction chain: Kuzmin et al Nat Phys (2019)]

Cold atoms, trapped ions, etc. Rydberg simulation of Neutral atom gate-based quantum spin liquid quantum community tweezer bear

[⁸⁷Rb Rydberg states: Lukin et al, Science (2021) Cs quantum gates: Saffmann et al, Nature (2022)]

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva, Nature (2013) twisted bilayer graphene: Jarillo-Herrero et al Nature (2018) STM on TaS₂: Liljeroth *et al* Nature (2021)]

Quantum dots

[3-channel Kondo device: Pierre *et al*, Science (2018) Si quantum dot: Eriksson, Joynt, Friesen et al Nat Comm (2022)]

artificial Kondo lattice

Artificial materials

Anderson Localization superconductorof polaritons insulator transition

[Polariton waveguides: J Bloch *et al*, Nat Phys (2020) Josephson junction chain: Kuzmin et al Nat Phys (2019)]

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva, Nature (2013) twisted bilayer graphene: Jarillo-Herrero et al Nature (2018) STM on TaS₂: Liljeroth *et al* Nature (2021)]

artificial Kondo lattice

Artificial materials

Anderson Localization superconductorof polaritons insulator transition

[Polariton waveguides: J Bloch *et al*, Nat Phys (2020) Josephson junction chain: Kuzmin et al Nat Phys (2019)]

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{\text{XEB}}=0$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{XEB} = \mathbf{0}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Maletinsky et al., Physics World (2019)

Quantum Sensing

Lc al magnetometry

scanning SQUID

NV centers

Local Kerr

[QSH edge states: Moler *et al*, Nat Mat (2013) gnetization in YIG: Yacoby et al PNAS (2021) Kerr: König, Burghard et al Nat Comm (2022)]

Lc al magnetometry

Scanning SQUID

[QSH edge states: Moler et al, Nat Mat (2013) gnetization in YIG: Yacoby et al PNAS (2021) Kerr: König, Burghard *et al* Nat Comm (2022)

 $R_{2p}I_{dc}^2$ W

Lc al magnetometry

Scanning SQUID

[QSH edge states: Moler et al, Nat Mat (2013) gnetization in YIG: Yacoby et al PNAS (2021) Kerr: König, Burghard *et al* Nat Comm (2022)

Scanning tunneling microscopy Twisted bilayer graphene Spinon Conde Spinon Kondo

 $R_{2p}I_{dc}^2$

[IVC in twisted bilayer graphene: Yazdani et al, Nature (2023) Spinon Kondo in TaS₂: Crommie *et al*, Nature (2022)]

Lc al magnetometry

Scanning SQUID

NV centers

[QSH edge states: Moler et al, Nat Mat (2013) gnetization in YIG: Yacoby et al PNAS (2021) Kerr: König, Burghard *et al* Nat Comm (2022)

cal potentiometry

Scanning single electron transistor

[Poiseuille profile in graphene: Ilani *et al*, Nature (2019) dams in graphene: Levchenko, Brar et al Science (2023)]

 $R_{2p}I_{dc}^2$

[IVC in twisted bilayer graphene: Yazdani et al, Nature (2023) Spinon Kondo in TaS₂: Crommie *et al*, Nature (2022)]

[Poiseuille profile in graphene: Ilani *et al*, Nature (2019) dams in graphene: Levchenko, Brar et al Science (2023)]

[IVC in twisted bilayer graphene: Yazdani et al, Nature (2023) Spinon Kondo in TaS₂: Crommie *et al*, Nature (2022)]

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{\text{XEB}}=0$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

quantum computing and communication

Quantum chip: Google Quantum, Science (2021)

Aspects of quartum science

 $\mathcal{F}_{XEB} = \mathbf{0}$ $\mathcal{F}_{\mathsf{XEB}}$ $\mathcal{F}_{\mathsf{XEB}}$

 $\mathcal{F}_{\mathsf{XEB}}$

quantum sensing

Color center magnetometry: Maletinsky et al., Physics World (2019)

Analog and Non-Universal

[Photonic Jiuzhang q computer: Pan et al, Science (2020) Quantum Annealer: D-Wave Quantum Systems Inc]

Quantum Computing

Analog and Non-Universal

[Photonic Jiuzhang q computer: Pan *et al*, Science (2020) Quantum Annealer: D-Wave Quantum Systems Inc]

Quantum Computing

Analog and Non-Universal

[Photonic Jiuzhang q computer: Pan *et al*, Science (2020) Quantum Annealer: D-Wave Quantum Systems Inc]

Noisy, Intermediate Scale Quantum (NISQ) era: gate based simulators

Quantum Computing

[VQE for molecules: Gambetta *et al*, Nature (2017), Bound states of XXZ chain: Roushan et al, Nature (2022), One-dimensional kicked Ising model: Abanin et al (2022)]

The König-group at UW

Quantum Information Quantum Materials Science

Quantum Information Quantum Materials simulate Science

[EJK, Komijani, Coleman, PRB 2020, EJK, Coleman, Tsvelik, PRB 2020 Li, EJK*, Väyrynen*, PRB (L) 2023, EJK, Tsvelik, Ann Phys 2023, Ren, EJK, Tsvelik PRB 2024, Bollmann, Väyrynen, EJK PRB 2024]

Bollmann,...,EJK, PRL 2024 (in press)]

[EJK, Coleman, Tsvelik, PRB 2020]

Bollmann,...,EJK, PRL 2024 (in press)]

[EJK, Coleman, Tsvelik, PRB 2020]

Bollmann,...,EJK, PRL 2024 (in press)]

4

[EJK, Coleman, Tsvelik, PRB 2020]

[Wagner, ..., EJK, ..., Sangiovanni, Nat Comm 2023, Bollmann,...,EJK, PRL 2024 (in press)]

site

12

Bollmann, Väyrynen, EJK PRB 2024]

4

[EJK, Coleman, Tsvelik, PRB 2020]

[Wagner, ..., EJK, ..., Sangiovanni, Nat Comm 2023, Bollmann,...,EJK, PRL 2024 (in press)]

site

12

Bollmann, Väyrynen, EJK PRB 2024]

[J. Fernández-Rossier, PRL 102, 256802 (2009), J. Fransson *et al.*, PRB **81**, 115454 (2010)]

[J. Fernández-Rossier, PRL **102**, 256802 (2009), J. Fransson *et al.*, PRB **81**, 115454 (2010)]

[J. Fernández-Rossier, PRL **102**, 256802 (2009), J. Fransson *et al.*, PRB **81**, 115454 (2010)]

[J. Knolle et al., PRL 112, 207203 (2014)]

Summary quantum science

quantum computing Analog Digital To next source To next source NISQ 0 03

quantum sensing

Magnetometry

Potentiometry

STM

