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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler
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10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Quantum chip: 
Google Quantum, Science (2021)
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:
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where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.
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To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
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are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:
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where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
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intractable in the regime of quantum supremacy. However, with certain 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:
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where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 
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The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:
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where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
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produce F = 1XEB . On the other hand, sampling from the uniform  
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between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
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large. This is a difficult task because our logic gates are imperfect and 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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array of 54 qubits (grey), each connected to its four nearest neighbours with 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Quantum chip: 
Google Quantum, Science (2021)

quantum design

2D materials (twisted bilayer graphene):
Efetov et al, Physics World (2019).

quantum materials

RuCl3: candidate Quantum Spin Liquid: 
Matsuda et al, Nature (2018).superposition 

principle

+ |1〉 |0〉 
discrete 

energy levels

is a resource for 

“parallelization”

probabilistic nature of quantum mechanics



quantum science
quantum sensing

Color center magnetometry:
Maletinsky et al., Physics World (2019)

Aspects of 

quantum computing 
and communication

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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The meaning of the term “quantum materials” may elude
some, but you can find good definitions in scientific

agency reports such as the one sponsored by the US
Department of Energy (Basic Research Needs Workshop on
Quantum Materials for Energy Relevant Technology, https://
science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_
r p t _ F i n a l _ 1 2 - 0 9 - 2 0 1 6 . p d f ? l a = e n & h a s h =
E7760711641883FFC9F110D70385937D6A31C64F) and in
other places online. For a deep understanding there are many
technical, often theoretical, treatments of the topic as it relates
to different phases of matter, and a reading of many of the
papers in this collection will tell you what our authors think of
the term. For chemists, we would say that the simplest of
definitions is that a quantum material is one whose electronic
or magnetic properties are best described as having a nontrivial
quantum mechanical originin other words materials where
classical particles or calculations that do not take into account
the full character of the system do not adequately describe the
electronic or magnetic properties displayed. Determining
whether the properties of a material have quantum origin is
a highly active field. Our job as chemists is to understand
enough about the properties of matter to take other scientists
on rides to materials unknown. In this special issue, the authors
have made an effort to forge a bridge between the physics and
chemistry of quantum materials, which until now have largely
developed in parallel. This bridging of condensed matter
physics with chemistry, theory, and experiment is essentially
the best subtitle for this issue.
We suspect that a significant part of the confusion in the

scientific community about “Quantum Materials” may come
from the fact that the term has made its appearance in the
scientific lexicon only recently. Many of these materials and
their study have been around for a while, but research in this
area is growing dramatically at the present time. You know
from your own research which chemical or physical character-
istics of a material or a molecule require a detailed
consideration of electron wave functions and their surround-
ings and which do not. You could say this about quantum
materials, paraphrased from another field entirely: “I will not
endeavor to provide a precise definition of what a quantum
material is, but I know one when I see it.” Examples of
quantum materials that you may generally be familiar with are
those that display the quantum Hall effect or super-
conductivity, topological insulators, spin liquids, qubits,
quantum sensors, or quantum dots. On the atomic scale,
interactions of four fundamental degrees of freedom in
quantum materialslattice, charge, orbital, and spinare
dynamically intertwined to result in a wide array of often
complex electronic states. The intention of this collection is for

some of the people who work at the border between chemistry
and physics to provide information and insights that we hope
will help to bring more chemists into this exciting field.
The appeal of working in the quantum materials area at this

point in time is largely due to the complexity and emergent
properties of quantum materials and how they challenge our
understanding of the properties of matter, but the more
practical among us reasonably argue that quantum materials
with exotic electronic properties may enable completely new
applicationsengendering novel routes to perform quantum
computation, for example, and thus realizing a long-term
technological dream. In fact, in some circles, where we are in
the development of computing technologies based on quantum
materials is at the beginning of “the second quantum
revolution”. Thus, quantum materials in the 21st century,
like semiconductors in the 20th century, which transformed
computation and information technology, will potentially
revolutionize information, sensing, energy, and related
technologies. Finally, as has been the case over and over
again in science, how this field continues to evolve, if we have
the foresight to keep it going, has the possibility to result in a
huge future economic benefit.
Classical solid-state materials display properties whose most

important characteristics can be best described based on the
classical behavior of particles or a low level quantum
mechanical treatment of electrons. Ionic motion in solids, for
example, the topic of many state-of-the-art studies, can be
considered as being classical materials physics because it can
primarily be explained via an electrostatic-based model for
interactions, even though a quantum-mechanics-based descrip-
tion of the electronic states of the systems may be required for
a full understanding of the ionic motion. Similarly, the
understanding of hybrid perovskites does not require physics
beyond that of conventional semiconductors, but a consid-
eration of electron wave functions may be helpful. Quantum
materials, however, display more esoteric but manifestly real
quantum effects, such as quantum fluctuations, quantum
entanglement, quantum coherence, and the dependence of
properties on the topology of the quantum mechanical wave
functions. A dramatic example of esoteric quantum-mechan-
ical-derived character is found in “topological insulators”, for
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The meaning of the term “quantum materials” may elude
some, but you can find good definitions in scientific

agency reports such as the one sponsored by the US
Department of Energy (Basic Research Needs Workshop on
Quantum Materials for Energy Relevant Technology, https://
science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_
r p t _ F i n a l _ 1 2 - 0 9 - 2 0 1 6 . p d f ? l a = e n & h a s h =
E7760711641883FFC9F110D70385937D6A31C64F) and in
other places online. For a deep understanding there are many
technical, often theoretical, treatments of the topic as it relates
to different phases of matter, and a reading of many of the
papers in this collection will tell you what our authors think of
the term. For chemists, we would say that the simplest of
definitions is that a quantum material is one whose electronic
or magnetic properties are best described as having a nontrivial
quantum mechanical originin other words materials where
classical particles or calculations that do not take into account
the full character of the system do not adequately describe the
electronic or magnetic properties displayed. Determining
whether the properties of a material have quantum origin is
a highly active field. Our job as chemists is to understand
enough about the properties of matter to take other scientists
on rides to materials unknown. In this special issue, the authors
have made an effort to forge a bridge between the physics and
chemistry of quantum materials, which until now have largely
developed in parallel. This bridging of condensed matter
physics with chemistry, theory, and experiment is essentially
the best subtitle for this issue.
We suspect that a significant part of the confusion in the

scientific community about “Quantum Materials” may come
from the fact that the term has made its appearance in the
scientific lexicon only recently. Many of these materials and
their study have been around for a while, but research in this
area is growing dramatically at the present time. You know
from your own research which chemical or physical character-
istics of a material or a molecule require a detailed
consideration of electron wave functions and their surround-
ings and which do not. You could say this about quantum
materials, paraphrased from another field entirely: “I will not
endeavor to provide a precise definition of what a quantum
material is, but I know one when I see it.” Examples of
quantum materials that you may generally be familiar with are
those that display the quantum Hall effect or super-
conductivity, topological insulators, spin liquids, qubits,
quantum sensors, or quantum dots. On the atomic scale,
interactions of four fundamental degrees of freedom in
quantum materialslattice, charge, orbital, and spinare
dynamically intertwined to result in a wide array of often
complex electronic states. The intention of this collection is for

some of the people who work at the border between chemistry
and physics to provide information and insights that we hope
will help to bring more chemists into this exciting field.
The appeal of working in the quantum materials area at this

point in time is largely due to the complexity and emergent
properties of quantum materials and how they challenge our
understanding of the properties of matter, but the more
practical among us reasonably argue that quantum materials
with exotic electronic properties may enable completely new
applicationsengendering novel routes to perform quantum
computation, for example, and thus realizing a long-term
technological dream. In fact, in some circles, where we are in
the development of computing technologies based on quantum
materials is at the beginning of “the second quantum
revolution”. Thus, quantum materials in the 21st century,
like semiconductors in the 20th century, which transformed
computation and information technology, will potentially
revolutionize information, sensing, energy, and related
technologies. Finally, as has been the case over and over
again in science, how this field continues to evolve, if we have
the foresight to keep it going, has the possibility to result in a
huge future economic benefit.
Classical solid-state materials display properties whose most

important characteristics can be best described based on the
classical behavior of particles or a low level quantum
mechanical treatment of electrons. Ionic motion in solids, for
example, the topic of many state-of-the-art studies, can be
considered as being classical materials physics because it can
primarily be explained via an electrostatic-based model for
interactions, even though a quantum-mechanics-based descrip-
tion of the electronic states of the systems may be required for
a full understanding of the ionic motion. Similarly, the
understanding of hybrid perovskites does not require physics
beyond that of conventional semiconductors, but a consid-
eration of electron wave functions may be helpful. Quantum
materials, however, display more esoteric but manifestly real
quantum effects, such as quantum fluctuations, quantum
entanglement, quantum coherence, and the dependence of
properties on the topology of the quantum mechanical wave
functions. A dramatic example of esoteric quantum-mechan-
ical-derived character is found in “topological insulators”, for
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superfluids and superconductors

[Superfluid He: A Leitner (BBC). 
UTe2: S Ran, …, N Butch, Nature Phys (2019)]

LETTERSNATURE PHYSICS

be direction-independent (Supplementary Fig. 5). This magnetic 
field scale seems to represent a general energy scale for correlated 
uranium compounds: weak anomalies are observed in the ferro-
magnetic superconductor UCoGe (ref. 16), whereas a large magneti-
zation jump occurs in the hidden-order compound URu2Si2 (ref. 17).

As Hm limits the SCRE phase, it gives rise to an even more star-
tling form of superconductivity. Sweeping magnetic fields through 
the angular range of θ = 20–40° from the b axis towards the c axis 
reveals a superconducting phase inside the field-polarized state 
SCFP at high H (Fig. 3). The onset field of the SCFP phase precisely 
follows the angle dependence of Hm, while the upper critical field 
goes through a dome, with the maximum value exceeding 65 T, the 
maximum field possible in our measurements. This new supercon-
ducting phase largely exceeds the magnetic field range of all known 
field-induced superconductors3–5,10. Owing to its shared phase 
boundary with the magnetic transition, this superconducting phase 
tolerates a rather large angular range of offsets from the b–c rotation 
plane. However, it does not appear when the field is rotated from the 
b axis to the a axis.

Having established the field limits and angle dependence of the 
SCFP phase, we turn to its temperature stability (Fig. 4). The onset 
field has almost no temperature dependence, again following Hm, 
while the upper critical field of the SCFP phase disappears near 1.6 K, 
similar to the zero-field superconducting critical temperature. This 
suggests that although it is stabilized at a remarkably high field, the 
new superconducting phase involves a similar pairing energy scale 
to the zero-field superconductor.

The mechanism responsible for the large magnetic field and 
temperature stability of the SCFP phase is unclear. A natural candi-
date is the Jaccarino–Peter effect used to describe other re-entrant 

superconductors9. This antiferromagnetic type of exchange inter-
action can lead to an internal magnetic field that is opposite the 
external magnetic field, resulting in a much smaller total magnetic 
field. This compensation mechanism has successfully explained 
the field-induced superconductivity in Chevrel-phase compounds 
and organic superconductors3–5, but it probably does not apply to 
the SCFP phase of UTe2, which lacks the requisite localized atomic 
moments. Furthermore, SCFP persists over a wider field–angle range 
than is typical of the compensation effect18.

The temperature dependence of the SCFP phase and its close 
relationship with the magnetic transition are reminiscent of the 
field-induced superconducting phase in URhGe, which has been 
attributed to ferromagnetic spin fluctuations associated with the 
competition of spin alignment between two weakly anisotropic 
axes. In URhGe, a magnetic field transverse to the direction of the 
ordered magnetic moments leads to the collapse of the Ising fer-
romagnetism; this instability enhances ferromagnetic fluctuations, 
which in turn induce superconductivity7.

UTe2, however, is not ferromagnetic. Nevertheless, the simi-
larities between UTe2 and the ferromagnetic superconductors with 
regard to the relationship between the preferred magnetic axis and 
the direction of high Hc2 (ref. 6) suggest that strong spin fluctua-
tions transverse to the preferred orientation or easy axis of the mag-
netic moment play a central role in these superconducting phases7. 
The Hc2 values and directionality in UTe2 can thus be understood 
in the following manner. Starting from zero magnetic field, super-
conductivity is most resilient to a magnetic field applied along the 
b axis, which is perpendicular to the easy magnetic a axis. A mag-
netic field applied along the b axis thus induces spin fluctuations 
that stabilize superconductivity against field-induced pair breaking. 
At 34.5 T, however, a magnetic phase transition occurs, and mag-
netic moments rotate from the a axis to the b axis. In the high-field-
polarized phase, a magnetic field along the b axis no longer induces 
transverse spin fluctuations, and superconductivity is suppressed 
completely. However, it is possible to induce transverse spin fluctua-
tions by applying a magnetic field along the c axis. When viewed as 
a vector sum of fields along the b and c axes (Fig. 3), it is clear that 
Hb stabilizes the magnetic phase, while a range of Hc strength val-
ues stabilize superconductivity with the highest re-entrant magnetic 
field values observed.

This ferromagnetic fluctuation scenario is qualitatively con-
sistent with the wider picture of field-induced superconducting  
phases in UTe2, yet a very important distinction exists between 
the SCFP phase and the field-induced superconducting phase in 
URhGe: the SCFP phase exists only in the field-polarized state.  
This challenges the current theory proposed for URhGe,  
which allows superconductivity to exist on both sides of the  
phase boundary7,19,20.

Through the suppression of the orbital limit, reduced dimen-
sionality has been theorized to stabilize high-field superconductiv-
ity21. A model proposed by Lebed and Sepper8 invoking spin-triplet 
pairing predicts re-entrant superconductivity at very high magnetic 
fields applied transverse to the axis of a quasi-one-dimensional 
conductor. The field-induced lower dimensionality is field–angle 
dependent and facilitates the recovery of the zero-field supercon-
ducting critical temperature, as we observe in SCFP (Figs. 3 and 4). 
The possibility that field-stabilizing effects may also exist in quasi-
two-dimensional superconductors21 suggests that high-field dimen-
sionality is a useful starting point for understanding the SCFP phase. 
Furthermore, the suppression of the orbital limit permits supercon-
ductivity in a pure material to survive in any magnetic field, making 
UTe2 an exciting basis for further testing of the limits of high-field-
boosted superconductivity.

The existence of the SCFP phase in only the field-polarized state, 
and in such a high magnetic field, suggests that the superconducting 
state probably has odd parity with time-reversal symmetry breaking. 
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Fig. 1 | Magnetic field-induced superconducting and polarized phases 
of UTe2. a, Sketch of how the magnetic field is applied with respect to the 
three crystallographic axes of UTe2. b, Top view of the sample platform 
with a two-axis rotator used in d.c. field measurements to achieve the 
best alignment. c, Magnetic field–angle phase diagram showing the three 
superconducting phases SCPM, SCRE and SCFP. FP is the field-polarized 
phase. The magnetic field is rotated within the a–b and b–c planes. The 
critical field values of the SCPM and SCRE phases are based on d.c. field 
measurements, and those of the SCFP and FP phases are based on pulsed 
field measurements. The SCRE phase was not observed for angles of θ larger 
than 3.9° in the b–c plane (Supplementary Fig. 1). The dashed lines are 
guides to the eye.
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[cuprates: Proust, Taillefer,  Annu. Rev. of CM Phys. (2019)]

strange & bad metals & pseudogap

Figure 1

Phase diagram of hole-doped cuprates. a) In zero field, superconductivity exists in a dome below Tc (dashed line).
When it is removed by a magnetic field, various underlying ground states are revealed: 1) Doped Mott insulator with
antiferromagnetic order, on the far left (brown, AF); 2) Pseudogap (PG) phase below a temperature T

? (yellow, PG),
ending at a T = 0 critical point p

? (red dot); 3) Charge-density-wave phase (blue, CDW), contained inside the pseudogap
phase; 4) a strange metal just above p

? (white region), which gives way to a Fermi liquid at highest doping (grey region).
b) Phase diagram of Nd-LSCO, with the pseudogap temperature T

? measured by resistivity (circles) and ARPES (square;
panels c, d), ending at the critical point p

? (from ref. (4)). c) ARPES spectra showing the pseudogap in Nd-LSCO
measured just above Tc at four dopings, as indicated (5). The pseudogap is seen to close between p = 0.20 and p = 0.24,
consistent with p

? = 0.23. d) ARPES spectra at p = 0.20 vs temperature (5). The pseudogap is seen to close at
T

? = 75 K (square in panel b).

1. INTRODUCTION

After more than three decades, cuprates continue to fascinate physicists because of a per-

sistent sense – a growing conviction – that these materials host novel quantum phenomena.

And these arise from electron interactions that are most likely also responsible for the

exceptionally strong superconductivity.

The repulsive interaction between electrons in cuprates is so strong that when there is

one electron on every Cu site of their CuO2 planes, a Mott insulator forms in which no

motion is possible. By removing electrons, or adding p holes (per Cu site), electron motion

is restored, and at high enough p cuprates become well-behaved metals. The unusual

phenomena occur in the intermediate regime, between the Mott insulator at p = 0 and the

Fermi liquid at p > 0.3 (Fig. 1a).

This is where superconductivity lives, below a critical temperature Tc that forms a dome

(Fig. 1a), peaking at a value that can exceed 150 K – halfway to room temperature. In this

Article, we ask the following question: How does the underlying normal state – from which

superconductivity emerges – evolve with doping? In particular, we focus on the ground

state, as T ! 0, accessed by suppressing superconductivity with a large magnetic field.

At T = 0, in the absence of superconductivity, the key event on the path from Fermi

liquid to Mott insulator is the onset of the pseudogap phase, at a critical doping p
? (red

dot in Fig. 1). One of the most remarkable – and puzzling – phenomena in condensed-

matter physics, the pseudogap phase exists in all hole-doped cuprates below a temperature

T
? that decreases with doping to end at p? (Fig. 1). We will discuss what high-field studies

reveal about the ground state of cuprates, both inside (p < p
?) and outside (p > p

?) the

pseudogap phase. The latter region presents another major puzzle of condensed-matter

2 Proust & Taillefer
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Figure 6
Across the quantum critical point. (a) Normal-state electronic specific heat in the T = 0 limit as a function of doping, plotted as
Cel/T versus p (red symbols) in Eu-LSCO (La1.8−xEu0.2SrxCuO4) (squares), Nd-LSCO (La1.6−xNd0.4SrxCuO4) (circles), and LSCO
(La2−xSrxCuO4) (diamonds; data from Reference 70). We also show Cel/T in YBCO (YBa2Cu3Oy) (blue dots, data from Reference 18)
and in Tl2201 (Tl2Ba2CuO6+δ) (green dot; data from Reference 71). The vertical gray lines mark the limits of the charge-density wave
(CDW) phase in Nd-LSCO, between p = 0.08 and p ≃ 0.19. (b) Normal-state Hall number nH (= V/e RH) in the T = 0 limit as a
function of doping, in YBCO (blue circles, p⋆= 0.19; data from Reference 21) and Nd-LSCO (red squares, p⋆= 0.23; data from
Reference 1). We also show nH in LSCO (gray squares; data from Reference 84) and YBCO (gray circles; data from Reference 83) at low
doping, and nH in Tl2201 (white diamond; data from Reference 31) at high doping.

5.1. Density of States
The drop in the DOS below p⋆ was initially deduced from a rapid decrease in the specific heat
jump at Tc, an indirect measure of the normal-state electronic specific heat coefficient γ = Cel/T
at T → 0, given their link via entropy balance. In Section 5.1.1, we describe how the drop in
the DOS is also seen in the condensation energy δE, another indirect measure of γ , given that
δE/Tc

2 ∝ γ . In Section 5.1.2, we turn to the direct measurement ofCel/T at T → 0, where recent
data reveal a huge peak at p⋆. This not only confirms the large drop in the DOS below p⋆ but it
also implies that there is major growth in the effective mass m⋆ as one approaches p⋆ from above.

5.1.1. Condensation energy. One way to access the DOS, NF, is via the superconducting
condensation energy δE, because δE = NF$

2
0/4, where $0 is the d-wave gap maximum. Ex-

perimentally, and in the framework of Bardeen–Cooper–Schrieffer theory, δE can be measured
using the upper and lower critical fields, Hc2 and Hc1, to get the thermodynamic field Hc via
H2

c = Hc1Hc2/[ln(κ ) + 0.5], given that δE = H2
c /2µ0. In Figure 2b, we plot δE/Tc

2 versus p as
obtained for YBCO (17).We see that δE/Tc

2 ∝ NF drops by a factor of 8–9 between p = 0.18 and
p = 0.1, which agrees with the drop reported earlier from an analysis of specific heat data mea-
sured in low fields up to T > Tc in YBCO (73) and Bi2212 (74). Note that ∼2/3 of this drop has
taken place before the onset of the CDW phase (see Figure 2), so that it is indeed a property of
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The meaning of the term “quantum materials” may elude
some, but you can find good definitions in scientific

agency reports such as the one sponsored by the US
Department of Energy (Basic Research Needs Workshop on
Quantum Materials for Energy Relevant Technology, https://
science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_
r p t _ F i n a l _ 1 2 - 0 9 - 2 0 1 6 . p d f ? l a = e n & h a s h =
E7760711641883FFC9F110D70385937D6A31C64F) and in
other places online. For a deep understanding there are many
technical, often theoretical, treatments of the topic as it relates
to different phases of matter, and a reading of many of the
papers in this collection will tell you what our authors think of
the term. For chemists, we would say that the simplest of
definitions is that a quantum material is one whose electronic
or magnetic properties are best described as having a nontrivial
quantum mechanical originin other words materials where
classical particles or calculations that do not take into account
the full character of the system do not adequately describe the
electronic or magnetic properties displayed. Determining
whether the properties of a material have quantum origin is
a highly active field. Our job as chemists is to understand
enough about the properties of matter to take other scientists
on rides to materials unknown. In this special issue, the authors
have made an effort to forge a bridge between the physics and
chemistry of quantum materials, which until now have largely
developed in parallel. This bridging of condensed matter
physics with chemistry, theory, and experiment is essentially
the best subtitle for this issue.
We suspect that a significant part of the confusion in the

scientific community about “Quantum Materials” may come
from the fact that the term has made its appearance in the
scientific lexicon only recently. Many of these materials and
their study have been around for a while, but research in this
area is growing dramatically at the present time. You know
from your own research which chemical or physical character-
istics of a material or a molecule require a detailed
consideration of electron wave functions and their surround-
ings and which do not. You could say this about quantum
materials, paraphrased from another field entirely: “I will not
endeavor to provide a precise definition of what a quantum
material is, but I know one when I see it.” Examples of
quantum materials that you may generally be familiar with are
those that display the quantum Hall effect or super-
conductivity, topological insulators, spin liquids, qubits,
quantum sensors, or quantum dots. On the atomic scale,
interactions of four fundamental degrees of freedom in
quantum materialslattice, charge, orbital, and spinare
dynamically intertwined to result in a wide array of often
complex electronic states. The intention of this collection is for

some of the people who work at the border between chemistry
and physics to provide information and insights that we hope
will help to bring more chemists into this exciting field.
The appeal of working in the quantum materials area at this

point in time is largely due to the complexity and emergent
properties of quantum materials and how they challenge our
understanding of the properties of matter, but the more
practical among us reasonably argue that quantum materials
with exotic electronic properties may enable completely new
applicationsengendering novel routes to perform quantum
computation, for example, and thus realizing a long-term
technological dream. In fact, in some circles, where we are in
the development of computing technologies based on quantum
materials is at the beginning of “the second quantum
revolution”. Thus, quantum materials in the 21st century,
like semiconductors in the 20th century, which transformed
computation and information technology, will potentially
revolutionize information, sensing, energy, and related
technologies. Finally, as has been the case over and over
again in science, how this field continues to evolve, if we have
the foresight to keep it going, has the possibility to result in a
huge future economic benefit.
Classical solid-state materials display properties whose most

important characteristics can be best described based on the
classical behavior of particles or a low level quantum
mechanical treatment of electrons. Ionic motion in solids, for
example, the topic of many state-of-the-art studies, can be
considered as being classical materials physics because it can
primarily be explained via an electrostatic-based model for
interactions, even though a quantum-mechanics-based descrip-
tion of the electronic states of the systems may be required for
a full understanding of the ionic motion. Similarly, the
understanding of hybrid perovskites does not require physics
beyond that of conventional semiconductors, but a consid-
eration of electron wave functions may be helpful. Quantum
materials, however, display more esoteric but manifestly real
quantum effects, such as quantum fluctuations, quantum
entanglement, quantum coherence, and the dependence of
properties on the topology of the quantum mechanical wave
functions. A dramatic example of esoteric quantum-mechan-
ical-derived character is found in “topological insulators”, for
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superfluids and superconductors

[Superfluid He: A Leitner (BBC). 
UTe2: S Ran, …, N Butch, Nature Phys (2019)]

LETTERSNATURE PHYSICS

be direction-independent (Supplementary Fig. 5). This magnetic 
field scale seems to represent a general energy scale for correlated 
uranium compounds: weak anomalies are observed in the ferro-
magnetic superconductor UCoGe (ref. 16), whereas a large magneti-
zation jump occurs in the hidden-order compound URu2Si2 (ref. 17).

As Hm limits the SCRE phase, it gives rise to an even more star-
tling form of superconductivity. Sweeping magnetic fields through 
the angular range of θ = 20–40° from the b axis towards the c axis 
reveals a superconducting phase inside the field-polarized state 
SCFP at high H (Fig. 3). The onset field of the SCFP phase precisely 
follows the angle dependence of Hm, while the upper critical field 
goes through a dome, with the maximum value exceeding 65 T, the 
maximum field possible in our measurements. This new supercon-
ducting phase largely exceeds the magnetic field range of all known 
field-induced superconductors3–5,10. Owing to its shared phase 
boundary with the magnetic transition, this superconducting phase 
tolerates a rather large angular range of offsets from the b–c rotation 
plane. However, it does not appear when the field is rotated from the 
b axis to the a axis.

Having established the field limits and angle dependence of the 
SCFP phase, we turn to its temperature stability (Fig. 4). The onset 
field has almost no temperature dependence, again following Hm, 
while the upper critical field of the SCFP phase disappears near 1.6 K, 
similar to the zero-field superconducting critical temperature. This 
suggests that although it is stabilized at a remarkably high field, the 
new superconducting phase involves a similar pairing energy scale 
to the zero-field superconductor.

The mechanism responsible for the large magnetic field and 
temperature stability of the SCFP phase is unclear. A natural candi-
date is the Jaccarino–Peter effect used to describe other re-entrant 

superconductors9. This antiferromagnetic type of exchange inter-
action can lead to an internal magnetic field that is opposite the 
external magnetic field, resulting in a much smaller total magnetic 
field. This compensation mechanism has successfully explained 
the field-induced superconductivity in Chevrel-phase compounds 
and organic superconductors3–5, but it probably does not apply to 
the SCFP phase of UTe2, which lacks the requisite localized atomic 
moments. Furthermore, SCFP persists over a wider field–angle range 
than is typical of the compensation effect18.

The temperature dependence of the SCFP phase and its close 
relationship with the magnetic transition are reminiscent of the 
field-induced superconducting phase in URhGe, which has been 
attributed to ferromagnetic spin fluctuations associated with the 
competition of spin alignment between two weakly anisotropic 
axes. In URhGe, a magnetic field transverse to the direction of the 
ordered magnetic moments leads to the collapse of the Ising fer-
romagnetism; this instability enhances ferromagnetic fluctuations, 
which in turn induce superconductivity7.

UTe2, however, is not ferromagnetic. Nevertheless, the simi-
larities between UTe2 and the ferromagnetic superconductors with 
regard to the relationship between the preferred magnetic axis and 
the direction of high Hc2 (ref. 6) suggest that strong spin fluctua-
tions transverse to the preferred orientation or easy axis of the mag-
netic moment play a central role in these superconducting phases7. 
The Hc2 values and directionality in UTe2 can thus be understood 
in the following manner. Starting from zero magnetic field, super-
conductivity is most resilient to a magnetic field applied along the 
b axis, which is perpendicular to the easy magnetic a axis. A mag-
netic field applied along the b axis thus induces spin fluctuations 
that stabilize superconductivity against field-induced pair breaking. 
At 34.5 T, however, a magnetic phase transition occurs, and mag-
netic moments rotate from the a axis to the b axis. In the high-field-
polarized phase, a magnetic field along the b axis no longer induces 
transverse spin fluctuations, and superconductivity is suppressed 
completely. However, it is possible to induce transverse spin fluctua-
tions by applying a magnetic field along the c axis. When viewed as 
a vector sum of fields along the b and c axes (Fig. 3), it is clear that 
Hb stabilizes the magnetic phase, while a range of Hc strength val-
ues stabilize superconductivity with the highest re-entrant magnetic 
field values observed.

This ferromagnetic fluctuation scenario is qualitatively con-
sistent with the wider picture of field-induced superconducting  
phases in UTe2, yet a very important distinction exists between 
the SCFP phase and the field-induced superconducting phase in 
URhGe: the SCFP phase exists only in the field-polarized state.  
This challenges the current theory proposed for URhGe,  
which allows superconductivity to exist on both sides of the  
phase boundary7,19,20.

Through the suppression of the orbital limit, reduced dimen-
sionality has been theorized to stabilize high-field superconductiv-
ity21. A model proposed by Lebed and Sepper8 invoking spin-triplet 
pairing predicts re-entrant superconductivity at very high magnetic 
fields applied transverse to the axis of a quasi-one-dimensional 
conductor. The field-induced lower dimensionality is field–angle 
dependent and facilitates the recovery of the zero-field supercon-
ducting critical temperature, as we observe in SCFP (Figs. 3 and 4). 
The possibility that field-stabilizing effects may also exist in quasi-
two-dimensional superconductors21 suggests that high-field dimen-
sionality is a useful starting point for understanding the SCFP phase. 
Furthermore, the suppression of the orbital limit permits supercon-
ductivity in a pure material to survive in any magnetic field, making 
UTe2 an exciting basis for further testing of the limits of high-field-
boosted superconductivity.

The existence of the SCFP phase in only the field-polarized state, 
and in such a high magnetic field, suggests that the superconducting 
state probably has odd parity with time-reversal symmetry breaking. 
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Fig. 1 | Magnetic field-induced superconducting and polarized phases 
of UTe2. a, Sketch of how the magnetic field is applied with respect to the 
three crystallographic axes of UTe2. b, Top view of the sample platform 
with a two-axis rotator used in d.c. field measurements to achieve the 
best alignment. c, Magnetic field–angle phase diagram showing the three 
superconducting phases SCPM, SCRE and SCFP. FP is the field-polarized 
phase. The magnetic field is rotated within the a–b and b–c planes. The 
critical field values of the SCPM and SCRE phases are based on d.c. field 
measurements, and those of the SCFP and FP phases are based on pulsed 
field measurements. The SCRE phase was not observed for angles of θ larger 
than 3.9° in the b–c plane (Supplementary Fig. 1). The dashed lines are 
guides to the eye.
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[cuprates: Proust, Taillefer,  Annu. Rev. of CM Phys. (2019)]

strange & bad metals & pseudogap

Figure 1

Phase diagram of hole-doped cuprates. a) In zero field, superconductivity exists in a dome below Tc (dashed line).
When it is removed by a magnetic field, various underlying ground states are revealed: 1) Doped Mott insulator with
antiferromagnetic order, on the far left (brown, AF); 2) Pseudogap (PG) phase below a temperature T

? (yellow, PG),
ending at a T = 0 critical point p

? (red dot); 3) Charge-density-wave phase (blue, CDW), contained inside the pseudogap
phase; 4) a strange metal just above p

? (white region), which gives way to a Fermi liquid at highest doping (grey region).
b) Phase diagram of Nd-LSCO, with the pseudogap temperature T

? measured by resistivity (circles) and ARPES (square;
panels c, d), ending at the critical point p

? (from ref. (4)). c) ARPES spectra showing the pseudogap in Nd-LSCO
measured just above Tc at four dopings, as indicated (5). The pseudogap is seen to close between p = 0.20 and p = 0.24,
consistent with p

? = 0.23. d) ARPES spectra at p = 0.20 vs temperature (5). The pseudogap is seen to close at
T

? = 75 K (square in panel b).

1. INTRODUCTION

After more than three decades, cuprates continue to fascinate physicists because of a per-

sistent sense – a growing conviction – that these materials host novel quantum phenomena.

And these arise from electron interactions that are most likely also responsible for the

exceptionally strong superconductivity.

The repulsive interaction between electrons in cuprates is so strong that when there is

one electron on every Cu site of their CuO2 planes, a Mott insulator forms in which no

motion is possible. By removing electrons, or adding p holes (per Cu site), electron motion

is restored, and at high enough p cuprates become well-behaved metals. The unusual

phenomena occur in the intermediate regime, between the Mott insulator at p = 0 and the

Fermi liquid at p > 0.3 (Fig. 1a).

This is where superconductivity lives, below a critical temperature Tc that forms a dome

(Fig. 1a), peaking at a value that can exceed 150 K – halfway to room temperature. In this

Article, we ask the following question: How does the underlying normal state – from which

superconductivity emerges – evolve with doping? In particular, we focus on the ground

state, as T ! 0, accessed by suppressing superconductivity with a large magnetic field.

At T = 0, in the absence of superconductivity, the key event on the path from Fermi

liquid to Mott insulator is the onset of the pseudogap phase, at a critical doping p
? (red

dot in Fig. 1). One of the most remarkable – and puzzling – phenomena in condensed-

matter physics, the pseudogap phase exists in all hole-doped cuprates below a temperature

T
? that decreases with doping to end at p? (Fig. 1). We will discuss what high-field studies

reveal about the ground state of cuprates, both inside (p < p
?) and outside (p > p

?) the

pseudogap phase. The latter region presents another major puzzle of condensed-matter

2 Proust & Taillefer
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Figure 6
Across the quantum critical point. (a) Normal-state electronic specific heat in the T = 0 limit as a function of doping, plotted as
Cel/T versus p (red symbols) in Eu-LSCO (La1.8−xEu0.2SrxCuO4) (squares), Nd-LSCO (La1.6−xNd0.4SrxCuO4) (circles), and LSCO
(La2−xSrxCuO4) (diamonds; data from Reference 70). We also show Cel/T in YBCO (YBa2Cu3Oy) (blue dots, data from Reference 18)
and in Tl2201 (Tl2Ba2CuO6+δ) (green dot; data from Reference 71). The vertical gray lines mark the limits of the charge-density wave
(CDW) phase in Nd-LSCO, between p = 0.08 and p ≃ 0.19. (b) Normal-state Hall number nH (= V/e RH) in the T = 0 limit as a
function of doping, in YBCO (blue circles, p⋆= 0.19; data from Reference 21) and Nd-LSCO (red squares, p⋆= 0.23; data from
Reference 1). We also show nH in LSCO (gray squares; data from Reference 84) and YBCO (gray circles; data from Reference 83) at low
doping, and nH in Tl2201 (white diamond; data from Reference 31) at high doping.

5.1. Density of States
The drop in the DOS below p⋆ was initially deduced from a rapid decrease in the specific heat
jump at Tc, an indirect measure of the normal-state electronic specific heat coefficient γ = Cel/T
at T → 0, given their link via entropy balance. In Section 5.1.1, we describe how the drop in
the DOS is also seen in the condensation energy δE, another indirect measure of γ , given that
δE/Tc

2 ∝ γ . In Section 5.1.2, we turn to the direct measurement ofCel/T at T → 0, where recent
data reveal a huge peak at p⋆. This not only confirms the large drop in the DOS below p⋆ but it
also implies that there is major growth in the effective mass m⋆ as one approaches p⋆ from above.

5.1.1. Condensation energy. One way to access the DOS, NF, is via the superconducting
condensation energy δE, because δE = NF$

2
0/4, where $0 is the d-wave gap maximum. Ex-

perimentally, and in the framework of Bardeen–Cooper–Schrieffer theory, δE can be measured
using the upper and lower critical fields, Hc2 and Hc1, to get the thermodynamic field Hc via
H2

c = Hc1Hc2/[ln(κ ) + 0.5], given that δE = H2
c /2µ0. In Figure 2b, we plot δE/Tc

2 versus p as
obtained for YBCO (17).We see that δE/Tc

2 ∝ NF drops by a factor of 8–9 between p = 0.18 and
p = 0.1, which agrees with the drop reported earlier from an analysis of specific heat data mea-
sured in low fields up to T > Tc in YBCO (73) and Bi2212 (74). Note that ∼2/3 of this drop has
taken place before the onset of the CDW phase (see Figure 2), so that it is indeed a property of
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Introduction: Quantum Materials

Cite This: Chem. Rev. 2021, 121, 2777−2779 Read Online

ACCESS Metrics & More Article Recommendations

The meaning of the term “quantum materials” may elude
some, but you can find good definitions in scientific

agency reports such as the one sponsored by the US
Department of Energy (Basic Research Needs Workshop on
Quantum Materials for Energy Relevant Technology, https://
science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_
r p t _ F i n a l _ 1 2 - 0 9 - 2 0 1 6 . p d f ? l a = e n & h a s h =
E7760711641883FFC9F110D70385937D6A31C64F) and in
other places online. For a deep understanding there are many
technical, often theoretical, treatments of the topic as it relates
to different phases of matter, and a reading of many of the
papers in this collection will tell you what our authors think of
the term. For chemists, we would say that the simplest of
definitions is that a quantum material is one whose electronic
or magnetic properties are best described as having a nontrivial
quantum mechanical originin other words materials where
classical particles or calculations that do not take into account
the full character of the system do not adequately describe the
electronic or magnetic properties displayed. Determining
whether the properties of a material have quantum origin is
a highly active field. Our job as chemists is to understand
enough about the properties of matter to take other scientists
on rides to materials unknown. In this special issue, the authors
have made an effort to forge a bridge between the physics and
chemistry of quantum materials, which until now have largely
developed in parallel. This bridging of condensed matter
physics with chemistry, theory, and experiment is essentially
the best subtitle for this issue.
We suspect that a significant part of the confusion in the

scientific community about “Quantum Materials” may come
from the fact that the term has made its appearance in the
scientific lexicon only recently. Many of these materials and
their study have been around for a while, but research in this
area is growing dramatically at the present time. You know
from your own research which chemical or physical character-
istics of a material or a molecule require a detailed
consideration of electron wave functions and their surround-
ings and which do not. You could say this about quantum
materials, paraphrased from another field entirely: “I will not
endeavor to provide a precise definition of what a quantum
material is, but I know one when I see it.” Examples of
quantum materials that you may generally be familiar with are
those that display the quantum Hall effect or super-
conductivity, topological insulators, spin liquids, qubits,
quantum sensors, or quantum dots. On the atomic scale,
interactions of four fundamental degrees of freedom in
quantum materialslattice, charge, orbital, and spinare
dynamically intertwined to result in a wide array of often
complex electronic states. The intention of this collection is for

some of the people who work at the border between chemistry
and physics to provide information and insights that we hope
will help to bring more chemists into this exciting field.
The appeal of working in the quantum materials area at this

point in time is largely due to the complexity and emergent
properties of quantum materials and how they challenge our
understanding of the properties of matter, but the more
practical among us reasonably argue that quantum materials
with exotic electronic properties may enable completely new
applicationsengendering novel routes to perform quantum
computation, for example, and thus realizing a long-term
technological dream. In fact, in some circles, where we are in
the development of computing technologies based on quantum
materials is at the beginning of “the second quantum
revolution”. Thus, quantum materials in the 21st century,
like semiconductors in the 20th century, which transformed
computation and information technology, will potentially
revolutionize information, sensing, energy, and related
technologies. Finally, as has been the case over and over
again in science, how this field continues to evolve, if we have
the foresight to keep it going, has the possibility to result in a
huge future economic benefit.
Classical solid-state materials display properties whose most

important characteristics can be best described based on the
classical behavior of particles or a low level quantum
mechanical treatment of electrons. Ionic motion in solids, for
example, the topic of many state-of-the-art studies, can be
considered as being classical materials physics because it can
primarily be explained via an electrostatic-based model for
interactions, even though a quantum-mechanics-based descrip-
tion of the electronic states of the systems may be required for
a full understanding of the ionic motion. Similarly, the
understanding of hybrid perovskites does not require physics
beyond that of conventional semiconductors, but a consid-
eration of electron wave functions may be helpful. Quantum
materials, however, display more esoteric but manifestly real
quantum effects, such as quantum fluctuations, quantum
entanglement, quantum coherence, and the dependence of
properties on the topology of the quantum mechanical wave
functions. A dramatic example of esoteric quantum-mechan-
ical-derived character is found in “topological insulators”, for
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Quantum Materials & forms of order

symmetry-protected topological phases

[scanning SQUID on graphene: Marguerite,…, Zeldov, Nature (2019)
ARPES on Bi2Se3: Wray, …, Hasan, Nat Phys (2010)]
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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superfluids and superconductors

[Superfluid He: A Leitner (BBC). 
UTe2: S Ran, …, N Butch, Nature Phys (2019)]
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be direction-independent (Supplementary Fig. 5). This magnetic 
field scale seems to represent a general energy scale for correlated 
uranium compounds: weak anomalies are observed in the ferro-
magnetic superconductor UCoGe (ref. 16), whereas a large magneti-
zation jump occurs in the hidden-order compound URu2Si2 (ref. 17).

As Hm limits the SCRE phase, it gives rise to an even more star-
tling form of superconductivity. Sweeping magnetic fields through 
the angular range of θ = 20–40° from the b axis towards the c axis 
reveals a superconducting phase inside the field-polarized state 
SCFP at high H (Fig. 3). The onset field of the SCFP phase precisely 
follows the angle dependence of Hm, while the upper critical field 
goes through a dome, with the maximum value exceeding 65 T, the 
maximum field possible in our measurements. This new supercon-
ducting phase largely exceeds the magnetic field range of all known 
field-induced superconductors3–5,10. Owing to its shared phase 
boundary with the magnetic transition, this superconducting phase 
tolerates a rather large angular range of offsets from the b–c rotation 
plane. However, it does not appear when the field is rotated from the 
b axis to the a axis.

Having established the field limits and angle dependence of the 
SCFP phase, we turn to its temperature stability (Fig. 4). The onset 
field has almost no temperature dependence, again following Hm, 
while the upper critical field of the SCFP phase disappears near 1.6 K, 
similar to the zero-field superconducting critical temperature. This 
suggests that although it is stabilized at a remarkably high field, the 
new superconducting phase involves a similar pairing energy scale 
to the zero-field superconductor.

The mechanism responsible for the large magnetic field and 
temperature stability of the SCFP phase is unclear. A natural candi-
date is the Jaccarino–Peter effect used to describe other re-entrant 

superconductors9. This antiferromagnetic type of exchange inter-
action can lead to an internal magnetic field that is opposite the 
external magnetic field, resulting in a much smaller total magnetic 
field. This compensation mechanism has successfully explained 
the field-induced superconductivity in Chevrel-phase compounds 
and organic superconductors3–5, but it probably does not apply to 
the SCFP phase of UTe2, which lacks the requisite localized atomic 
moments. Furthermore, SCFP persists over a wider field–angle range 
than is typical of the compensation effect18.

The temperature dependence of the SCFP phase and its close 
relationship with the magnetic transition are reminiscent of the 
field-induced superconducting phase in URhGe, which has been 
attributed to ferromagnetic spin fluctuations associated with the 
competition of spin alignment between two weakly anisotropic 
axes. In URhGe, a magnetic field transverse to the direction of the 
ordered magnetic moments leads to the collapse of the Ising fer-
romagnetism; this instability enhances ferromagnetic fluctuations, 
which in turn induce superconductivity7.

UTe2, however, is not ferromagnetic. Nevertheless, the simi-
larities between UTe2 and the ferromagnetic superconductors with 
regard to the relationship between the preferred magnetic axis and 
the direction of high Hc2 (ref. 6) suggest that strong spin fluctua-
tions transverse to the preferred orientation or easy axis of the mag-
netic moment play a central role in these superconducting phases7. 
The Hc2 values and directionality in UTe2 can thus be understood 
in the following manner. Starting from zero magnetic field, super-
conductivity is most resilient to a magnetic field applied along the 
b axis, which is perpendicular to the easy magnetic a axis. A mag-
netic field applied along the b axis thus induces spin fluctuations 
that stabilize superconductivity against field-induced pair breaking. 
At 34.5 T, however, a magnetic phase transition occurs, and mag-
netic moments rotate from the a axis to the b axis. In the high-field-
polarized phase, a magnetic field along the b axis no longer induces 
transverse spin fluctuations, and superconductivity is suppressed 
completely. However, it is possible to induce transverse spin fluctua-
tions by applying a magnetic field along the c axis. When viewed as 
a vector sum of fields along the b and c axes (Fig. 3), it is clear that 
Hb stabilizes the magnetic phase, while a range of Hc strength val-
ues stabilize superconductivity with the highest re-entrant magnetic 
field values observed.

This ferromagnetic fluctuation scenario is qualitatively con-
sistent with the wider picture of field-induced superconducting  
phases in UTe2, yet a very important distinction exists between 
the SCFP phase and the field-induced superconducting phase in 
URhGe: the SCFP phase exists only in the field-polarized state.  
This challenges the current theory proposed for URhGe,  
which allows superconductivity to exist on both sides of the  
phase boundary7,19,20.

Through the suppression of the orbital limit, reduced dimen-
sionality has been theorized to stabilize high-field superconductiv-
ity21. A model proposed by Lebed and Sepper8 invoking spin-triplet 
pairing predicts re-entrant superconductivity at very high magnetic 
fields applied transverse to the axis of a quasi-one-dimensional 
conductor. The field-induced lower dimensionality is field–angle 
dependent and facilitates the recovery of the zero-field supercon-
ducting critical temperature, as we observe in SCFP (Figs. 3 and 4). 
The possibility that field-stabilizing effects may also exist in quasi-
two-dimensional superconductors21 suggests that high-field dimen-
sionality is a useful starting point for understanding the SCFP phase. 
Furthermore, the suppression of the orbital limit permits supercon-
ductivity in a pure material to survive in any magnetic field, making 
UTe2 an exciting basis for further testing of the limits of high-field-
boosted superconductivity.

The existence of the SCFP phase in only the field-polarized state, 
and in such a high magnetic field, suggests that the superconducting 
state probably has odd parity with time-reversal symmetry breaking. 
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Fig. 1 | Magnetic field-induced superconducting and polarized phases 
of UTe2. a, Sketch of how the magnetic field is applied with respect to the 
three crystallographic axes of UTe2. b, Top view of the sample platform 
with a two-axis rotator used in d.c. field measurements to achieve the 
best alignment. c, Magnetic field–angle phase diagram showing the three 
superconducting phases SCPM, SCRE and SCFP. FP is the field-polarized 
phase. The magnetic field is rotated within the a–b and b–c planes. The 
critical field values of the SCPM and SCRE phases are based on d.c. field 
measurements, and those of the SCFP and FP phases are based on pulsed 
field measurements. The SCRE phase was not observed for angles of θ larger 
than 3.9° in the b–c plane (Supplementary Fig. 1). The dashed lines are 
guides to the eye.
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[cuprates: Proust, Taillefer,  Annu. Rev. of CM Phys. (2019)]

strange & bad metals & pseudogap

Figure 1

Phase diagram of hole-doped cuprates. a) In zero field, superconductivity exists in a dome below Tc (dashed line).
When it is removed by a magnetic field, various underlying ground states are revealed: 1) Doped Mott insulator with
antiferromagnetic order, on the far left (brown, AF); 2) Pseudogap (PG) phase below a temperature T

? (yellow, PG),
ending at a T = 0 critical point p

? (red dot); 3) Charge-density-wave phase (blue, CDW), contained inside the pseudogap
phase; 4) a strange metal just above p

? (white region), which gives way to a Fermi liquid at highest doping (grey region).
b) Phase diagram of Nd-LSCO, with the pseudogap temperature T

? measured by resistivity (circles) and ARPES (square;
panels c, d), ending at the critical point p

? (from ref. (4)). c) ARPES spectra showing the pseudogap in Nd-LSCO
measured just above Tc at four dopings, as indicated (5). The pseudogap is seen to close between p = 0.20 and p = 0.24,
consistent with p

? = 0.23. d) ARPES spectra at p = 0.20 vs temperature (5). The pseudogap is seen to close at
T

? = 75 K (square in panel b).

1. INTRODUCTION

After more than three decades, cuprates continue to fascinate physicists because of a per-

sistent sense – a growing conviction – that these materials host novel quantum phenomena.

And these arise from electron interactions that are most likely also responsible for the

exceptionally strong superconductivity.

The repulsive interaction between electrons in cuprates is so strong that when there is

one electron on every Cu site of their CuO2 planes, a Mott insulator forms in which no

motion is possible. By removing electrons, or adding p holes (per Cu site), electron motion

is restored, and at high enough p cuprates become well-behaved metals. The unusual

phenomena occur in the intermediate regime, between the Mott insulator at p = 0 and the

Fermi liquid at p > 0.3 (Fig. 1a).

This is where superconductivity lives, below a critical temperature Tc that forms a dome

(Fig. 1a), peaking at a value that can exceed 150 K – halfway to room temperature. In this

Article, we ask the following question: How does the underlying normal state – from which

superconductivity emerges – evolve with doping? In particular, we focus on the ground

state, as T ! 0, accessed by suppressing superconductivity with a large magnetic field.

At T = 0, in the absence of superconductivity, the key event on the path from Fermi

liquid to Mott insulator is the onset of the pseudogap phase, at a critical doping p
? (red

dot in Fig. 1). One of the most remarkable – and puzzling – phenomena in condensed-

matter physics, the pseudogap phase exists in all hole-doped cuprates below a temperature

T
? that decreases with doping to end at p? (Fig. 1). We will discuss what high-field studies

reveal about the ground state of cuprates, both inside (p < p
?) and outside (p > p

?) the

pseudogap phase. The latter region presents another major puzzle of condensed-matter

2 Proust & Taillefer
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Figure 6
Across the quantum critical point. (a) Normal-state electronic specific heat in the T = 0 limit as a function of doping, plotted as
Cel/T versus p (red symbols) in Eu-LSCO (La1.8−xEu0.2SrxCuO4) (squares), Nd-LSCO (La1.6−xNd0.4SrxCuO4) (circles), and LSCO
(La2−xSrxCuO4) (diamonds; data from Reference 70). We also show Cel/T in YBCO (YBa2Cu3Oy) (blue dots, data from Reference 18)
and in Tl2201 (Tl2Ba2CuO6+δ) (green dot; data from Reference 71). The vertical gray lines mark the limits of the charge-density wave
(CDW) phase in Nd-LSCO, between p = 0.08 and p ≃ 0.19. (b) Normal-state Hall number nH (= V/e RH) in the T = 0 limit as a
function of doping, in YBCO (blue circles, p⋆= 0.19; data from Reference 21) and Nd-LSCO (red squares, p⋆= 0.23; data from
Reference 1). We also show nH in LSCO (gray squares; data from Reference 84) and YBCO (gray circles; data from Reference 83) at low
doping, and nH in Tl2201 (white diamond; data from Reference 31) at high doping.

5.1. Density of States
The drop in the DOS below p⋆ was initially deduced from a rapid decrease in the specific heat
jump at Tc, an indirect measure of the normal-state electronic specific heat coefficient γ = Cel/T
at T → 0, given their link via entropy balance. In Section 5.1.1, we describe how the drop in
the DOS is also seen in the condensation energy δE, another indirect measure of γ , given that
δE/Tc

2 ∝ γ . In Section 5.1.2, we turn to the direct measurement ofCel/T at T → 0, where recent
data reveal a huge peak at p⋆. This not only confirms the large drop in the DOS below p⋆ but it
also implies that there is major growth in the effective mass m⋆ as one approaches p⋆ from above.

5.1.1. Condensation energy. One way to access the DOS, NF, is via the superconducting
condensation energy δE, because δE = NF$

2
0/4, where $0 is the d-wave gap maximum. Ex-

perimentally, and in the framework of Bardeen–Cooper–Schrieffer theory, δE can be measured
using the upper and lower critical fields, Hc2 and Hc1, to get the thermodynamic field Hc via
H2

c = Hc1Hc2/[ln(κ ) + 0.5], given that δE = H2
c /2µ0. In Figure 2b, we plot δE/Tc

2 versus p as
obtained for YBCO (17).We see that δE/Tc

2 ∝ NF drops by a factor of 8–9 between p = 0.18 and
p = 0.1, which agrees with the drop reported earlier from an analysis of specific heat data mea-
sured in low fields up to T > Tc in YBCO (73) and Bi2212 (74). Note that ∼2/3 of this drop has
taken place before the onset of the CDW phase (see Figure 2), so that it is indeed a property of
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Introduction: Quantum Materials

Cite This: Chem. Rev. 2021, 121, 2777−2779 Read Online

ACCESS Metrics & More Article Recommendations

The meaning of the term “quantum materials” may elude
some, but you can find good definitions in scientific

agency reports such as the one sponsored by the US
Department of Energy (Basic Research Needs Workshop on
Quantum Materials for Energy Relevant Technology, https://
science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_
r p t _ F i n a l _ 1 2 - 0 9 - 2 0 1 6 . p d f ? l a = e n & h a s h =
E7760711641883FFC9F110D70385937D6A31C64F) and in
other places online. For a deep understanding there are many
technical, often theoretical, treatments of the topic as it relates
to different phases of matter, and a reading of many of the
papers in this collection will tell you what our authors think of
the term. For chemists, we would say that the simplest of
definitions is that a quantum material is one whose electronic
or magnetic properties are best described as having a nontrivial
quantum mechanical originin other words materials where
classical particles or calculations that do not take into account
the full character of the system do not adequately describe the
electronic or magnetic properties displayed. Determining
whether the properties of a material have quantum origin is
a highly active field. Our job as chemists is to understand
enough about the properties of matter to take other scientists
on rides to materials unknown. In this special issue, the authors
have made an effort to forge a bridge between the physics and
chemistry of quantum materials, which until now have largely
developed in parallel. This bridging of condensed matter
physics with chemistry, theory, and experiment is essentially
the best subtitle for this issue.
We suspect that a significant part of the confusion in the

scientific community about “Quantum Materials” may come
from the fact that the term has made its appearance in the
scientific lexicon only recently. Many of these materials and
their study have been around for a while, but research in this
area is growing dramatically at the present time. You know
from your own research which chemical or physical character-
istics of a material or a molecule require a detailed
consideration of electron wave functions and their surround-
ings and which do not. You could say this about quantum
materials, paraphrased from another field entirely: “I will not
endeavor to provide a precise definition of what a quantum
material is, but I know one when I see it.” Examples of
quantum materials that you may generally be familiar with are
those that display the quantum Hall effect or super-
conductivity, topological insulators, spin liquids, qubits,
quantum sensors, or quantum dots. On the atomic scale,
interactions of four fundamental degrees of freedom in
quantum materialslattice, charge, orbital, and spinare
dynamically intertwined to result in a wide array of often
complex electronic states. The intention of this collection is for

some of the people who work at the border between chemistry
and physics to provide information and insights that we hope
will help to bring more chemists into this exciting field.
The appeal of working in the quantum materials area at this

point in time is largely due to the complexity and emergent
properties of quantum materials and how they challenge our
understanding of the properties of matter, but the more
practical among us reasonably argue that quantum materials
with exotic electronic properties may enable completely new
applicationsengendering novel routes to perform quantum
computation, for example, and thus realizing a long-term
technological dream. In fact, in some circles, where we are in
the development of computing technologies based on quantum
materials is at the beginning of “the second quantum
revolution”. Thus, quantum materials in the 21st century,
like semiconductors in the 20th century, which transformed
computation and information technology, will potentially
revolutionize information, sensing, energy, and related
technologies. Finally, as has been the case over and over
again in science, how this field continues to evolve, if we have
the foresight to keep it going, has the possibility to result in a
huge future economic benefit.
Classical solid-state materials display properties whose most

important characteristics can be best described based on the
classical behavior of particles or a low level quantum
mechanical treatment of electrons. Ionic motion in solids, for
example, the topic of many state-of-the-art studies, can be
considered as being classical materials physics because it can
primarily be explained via an electrostatic-based model for
interactions, even though a quantum-mechanics-based descrip-
tion of the electronic states of the systems may be required for
a full understanding of the ionic motion. Similarly, the
understanding of hybrid perovskites does not require physics
beyond that of conventional semiconductors, but a consid-
eration of electron wave functions may be helpful. Quantum
materials, however, display more esoteric but manifestly real
quantum effects, such as quantum fluctuations, quantum
entanglement, quantum coherence, and the dependence of
properties on the topology of the quantum mechanical wave
functions. A dramatic example of esoteric quantum-mechan-
ical-derived character is found in “topological insulators”, for
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Quantum Materials & forms of order

symmetry-protected topological phases

[scanning SQUID on graphene: Marguerite,…, Zeldov, Nature (2019)
ARPES on Bi2Se3: Wray, …, Hasan, Nat Phys (2010)]
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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superfluids and superconductors

[Superfluid He: A Leitner (BBC). 
UTe2: S Ran, …, N Butch, Nature Phys (2019)]
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be direction-independent (Supplementary Fig. 5). This magnetic 
field scale seems to represent a general energy scale for correlated 
uranium compounds: weak anomalies are observed in the ferro-
magnetic superconductor UCoGe (ref. 16), whereas a large magneti-
zation jump occurs in the hidden-order compound URu2Si2 (ref. 17).

As Hm limits the SCRE phase, it gives rise to an even more star-
tling form of superconductivity. Sweeping magnetic fields through 
the angular range of θ = 20–40° from the b axis towards the c axis 
reveals a superconducting phase inside the field-polarized state 
SCFP at high H (Fig. 3). The onset field of the SCFP phase precisely 
follows the angle dependence of Hm, while the upper critical field 
goes through a dome, with the maximum value exceeding 65 T, the 
maximum field possible in our measurements. This new supercon-
ducting phase largely exceeds the magnetic field range of all known 
field-induced superconductors3–5,10. Owing to its shared phase 
boundary with the magnetic transition, this superconducting phase 
tolerates a rather large angular range of offsets from the b–c rotation 
plane. However, it does not appear when the field is rotated from the 
b axis to the a axis.

Having established the field limits and angle dependence of the 
SCFP phase, we turn to its temperature stability (Fig. 4). The onset 
field has almost no temperature dependence, again following Hm, 
while the upper critical field of the SCFP phase disappears near 1.6 K, 
similar to the zero-field superconducting critical temperature. This 
suggests that although it is stabilized at a remarkably high field, the 
new superconducting phase involves a similar pairing energy scale 
to the zero-field superconductor.

The mechanism responsible for the large magnetic field and 
temperature stability of the SCFP phase is unclear. A natural candi-
date is the Jaccarino–Peter effect used to describe other re-entrant 

superconductors9. This antiferromagnetic type of exchange inter-
action can lead to an internal magnetic field that is opposite the 
external magnetic field, resulting in a much smaller total magnetic 
field. This compensation mechanism has successfully explained 
the field-induced superconductivity in Chevrel-phase compounds 
and organic superconductors3–5, but it probably does not apply to 
the SCFP phase of UTe2, which lacks the requisite localized atomic 
moments. Furthermore, SCFP persists over a wider field–angle range 
than is typical of the compensation effect18.

The temperature dependence of the SCFP phase and its close 
relationship with the magnetic transition are reminiscent of the 
field-induced superconducting phase in URhGe, which has been 
attributed to ferromagnetic spin fluctuations associated with the 
competition of spin alignment between two weakly anisotropic 
axes. In URhGe, a magnetic field transverse to the direction of the 
ordered magnetic moments leads to the collapse of the Ising fer-
romagnetism; this instability enhances ferromagnetic fluctuations, 
which in turn induce superconductivity7.

UTe2, however, is not ferromagnetic. Nevertheless, the simi-
larities between UTe2 and the ferromagnetic superconductors with 
regard to the relationship between the preferred magnetic axis and 
the direction of high Hc2 (ref. 6) suggest that strong spin fluctua-
tions transverse to the preferred orientation or easy axis of the mag-
netic moment play a central role in these superconducting phases7. 
The Hc2 values and directionality in UTe2 can thus be understood 
in the following manner. Starting from zero magnetic field, super-
conductivity is most resilient to a magnetic field applied along the 
b axis, which is perpendicular to the easy magnetic a axis. A mag-
netic field applied along the b axis thus induces spin fluctuations 
that stabilize superconductivity against field-induced pair breaking. 
At 34.5 T, however, a magnetic phase transition occurs, and mag-
netic moments rotate from the a axis to the b axis. In the high-field-
polarized phase, a magnetic field along the b axis no longer induces 
transverse spin fluctuations, and superconductivity is suppressed 
completely. However, it is possible to induce transverse spin fluctua-
tions by applying a magnetic field along the c axis. When viewed as 
a vector sum of fields along the b and c axes (Fig. 3), it is clear that 
Hb stabilizes the magnetic phase, while a range of Hc strength val-
ues stabilize superconductivity with the highest re-entrant magnetic 
field values observed.

This ferromagnetic fluctuation scenario is qualitatively con-
sistent with the wider picture of field-induced superconducting  
phases in UTe2, yet a very important distinction exists between 
the SCFP phase and the field-induced superconducting phase in 
URhGe: the SCFP phase exists only in the field-polarized state.  
This challenges the current theory proposed for URhGe,  
which allows superconductivity to exist on both sides of the  
phase boundary7,19,20.

Through the suppression of the orbital limit, reduced dimen-
sionality has been theorized to stabilize high-field superconductiv-
ity21. A model proposed by Lebed and Sepper8 invoking spin-triplet 
pairing predicts re-entrant superconductivity at very high magnetic 
fields applied transverse to the axis of a quasi-one-dimensional 
conductor. The field-induced lower dimensionality is field–angle 
dependent and facilitates the recovery of the zero-field supercon-
ducting critical temperature, as we observe in SCFP (Figs. 3 and 4). 
The possibility that field-stabilizing effects may also exist in quasi-
two-dimensional superconductors21 suggests that high-field dimen-
sionality is a useful starting point for understanding the SCFP phase. 
Furthermore, the suppression of the orbital limit permits supercon-
ductivity in a pure material to survive in any magnetic field, making 
UTe2 an exciting basis for further testing of the limits of high-field-
boosted superconductivity.

The existence of the SCFP phase in only the field-polarized state, 
and in such a high magnetic field, suggests that the superconducting 
state probably has odd parity with time-reversal symmetry breaking. 
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Fig. 1 | Magnetic field-induced superconducting and polarized phases 
of UTe2. a, Sketch of how the magnetic field is applied with respect to the 
three crystallographic axes of UTe2. b, Top view of the sample platform 
with a two-axis rotator used in d.c. field measurements to achieve the 
best alignment. c, Magnetic field–angle phase diagram showing the three 
superconducting phases SCPM, SCRE and SCFP. FP is the field-polarized 
phase. The magnetic field is rotated within the a–b and b–c planes. The 
critical field values of the SCPM and SCRE phases are based on d.c. field 
measurements, and those of the SCFP and FP phases are based on pulsed 
field measurements. The SCRE phase was not observed for angles of θ larger 
than 3.9° in the b–c plane (Supplementary Fig. 1). The dashed lines are 
guides to the eye.
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[cuprates: Proust, Taillefer,  Annu. Rev. of CM Phys. (2019)]

strange & bad metals & pseudogap

Figure 1

Phase diagram of hole-doped cuprates. a) In zero field, superconductivity exists in a dome below Tc (dashed line).
When it is removed by a magnetic field, various underlying ground states are revealed: 1) Doped Mott insulator with
antiferromagnetic order, on the far left (brown, AF); 2) Pseudogap (PG) phase below a temperature T

? (yellow, PG),
ending at a T = 0 critical point p

? (red dot); 3) Charge-density-wave phase (blue, CDW), contained inside the pseudogap
phase; 4) a strange metal just above p

? (white region), which gives way to a Fermi liquid at highest doping (grey region).
b) Phase diagram of Nd-LSCO, with the pseudogap temperature T

? measured by resistivity (circles) and ARPES (square;
panels c, d), ending at the critical point p

? (from ref. (4)). c) ARPES spectra showing the pseudogap in Nd-LSCO
measured just above Tc at four dopings, as indicated (5). The pseudogap is seen to close between p = 0.20 and p = 0.24,
consistent with p

? = 0.23. d) ARPES spectra at p = 0.20 vs temperature (5). The pseudogap is seen to close at
T

? = 75 K (square in panel b).

1. INTRODUCTION

After more than three decades, cuprates continue to fascinate physicists because of a per-

sistent sense – a growing conviction – that these materials host novel quantum phenomena.

And these arise from electron interactions that are most likely also responsible for the

exceptionally strong superconductivity.

The repulsive interaction between electrons in cuprates is so strong that when there is

one electron on every Cu site of their CuO2 planes, a Mott insulator forms in which no

motion is possible. By removing electrons, or adding p holes (per Cu site), electron motion

is restored, and at high enough p cuprates become well-behaved metals. The unusual

phenomena occur in the intermediate regime, between the Mott insulator at p = 0 and the

Fermi liquid at p > 0.3 (Fig. 1a).

This is where superconductivity lives, below a critical temperature Tc that forms a dome

(Fig. 1a), peaking at a value that can exceed 150 K – halfway to room temperature. In this

Article, we ask the following question: How does the underlying normal state – from which

superconductivity emerges – evolve with doping? In particular, we focus on the ground

state, as T ! 0, accessed by suppressing superconductivity with a large magnetic field.

At T = 0, in the absence of superconductivity, the key event on the path from Fermi

liquid to Mott insulator is the onset of the pseudogap phase, at a critical doping p
? (red

dot in Fig. 1). One of the most remarkable – and puzzling – phenomena in condensed-

matter physics, the pseudogap phase exists in all hole-doped cuprates below a temperature

T
? that decreases with doping to end at p? (Fig. 1). We will discuss what high-field studies

reveal about the ground state of cuprates, both inside (p < p
?) and outside (p > p

?) the

pseudogap phase. The latter region presents another major puzzle of condensed-matter

2 Proust & Taillefer
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Figure 6
Across the quantum critical point. (a) Normal-state electronic specific heat in the T = 0 limit as a function of doping, plotted as
Cel/T versus p (red symbols) in Eu-LSCO (La1.8−xEu0.2SrxCuO4) (squares), Nd-LSCO (La1.6−xNd0.4SrxCuO4) (circles), and LSCO
(La2−xSrxCuO4) (diamonds; data from Reference 70). We also show Cel/T in YBCO (YBa2Cu3Oy) (blue dots, data from Reference 18)
and in Tl2201 (Tl2Ba2CuO6+δ) (green dot; data from Reference 71). The vertical gray lines mark the limits of the charge-density wave
(CDW) phase in Nd-LSCO, between p = 0.08 and p ≃ 0.19. (b) Normal-state Hall number nH (= V/e RH) in the T = 0 limit as a
function of doping, in YBCO (blue circles, p⋆= 0.19; data from Reference 21) and Nd-LSCO (red squares, p⋆= 0.23; data from
Reference 1). We also show nH in LSCO (gray squares; data from Reference 84) and YBCO (gray circles; data from Reference 83) at low
doping, and nH in Tl2201 (white diamond; data from Reference 31) at high doping.

5.1. Density of States
The drop in the DOS below p⋆ was initially deduced from a rapid decrease in the specific heat
jump at Tc, an indirect measure of the normal-state electronic specific heat coefficient γ = Cel/T
at T → 0, given their link via entropy balance. In Section 5.1.1, we describe how the drop in
the DOS is also seen in the condensation energy δE, another indirect measure of γ , given that
δE/Tc

2 ∝ γ . In Section 5.1.2, we turn to the direct measurement ofCel/T at T → 0, where recent
data reveal a huge peak at p⋆. This not only confirms the large drop in the DOS below p⋆ but it
also implies that there is major growth in the effective mass m⋆ as one approaches p⋆ from above.

5.1.1. Condensation energy. One way to access the DOS, NF, is via the superconducting
condensation energy δE, because δE = NF$

2
0/4, where $0 is the d-wave gap maximum. Ex-

perimentally, and in the framework of Bardeen–Cooper–Schrieffer theory, δE can be measured
using the upper and lower critical fields, Hc2 and Hc1, to get the thermodynamic field Hc via
H2

c = Hc1Hc2/[ln(κ ) + 0.5], given that δE = H2
c /2µ0. In Figure 2b, we plot δE/Tc

2 versus p as
obtained for YBCO (17).We see that δE/Tc

2 ∝ NF drops by a factor of 8–9 between p = 0.18 and
p = 0.1, which agrees with the drop reported earlier from an analysis of specific heat data mea-
sured in low fields up to T > Tc in YBCO (73) and Bi2212 (74). Note that ∼2/3 of this drop has
taken place before the onset of the CDW phase (see Figure 2), so that it is indeed a property of
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topological order
fractional quantum Hall quantum spin liquid

Introduction: Quantum Materials
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The meaning of the term “quantum materials” may elude
some, but you can find good definitions in scientific

agency reports such as the one sponsored by the US
Department of Energy (Basic Research Needs Workshop on
Quantum Materials for Energy Relevant Technology, https://
science.osti.gov/-/media/bes/pdf/reports/2016/BRNQM_
r p t _ F i n a l _ 1 2 - 0 9 - 2 0 1 6 . p d f ? l a = e n & h a s h =
E7760711641883FFC9F110D70385937D6A31C64F) and in
other places online. For a deep understanding there are many
technical, often theoretical, treatments of the topic as it relates
to different phases of matter, and a reading of many of the
papers in this collection will tell you what our authors think of
the term. For chemists, we would say that the simplest of
definitions is that a quantum material is one whose electronic
or magnetic properties are best described as having a nontrivial
quantum mechanical originin other words materials where
classical particles or calculations that do not take into account
the full character of the system do not adequately describe the
electronic or magnetic properties displayed. Determining
whether the properties of a material have quantum origin is
a highly active field. Our job as chemists is to understand
enough about the properties of matter to take other scientists
on rides to materials unknown. In this special issue, the authors
have made an effort to forge a bridge between the physics and
chemistry of quantum materials, which until now have largely
developed in parallel. This bridging of condensed matter
physics with chemistry, theory, and experiment is essentially
the best subtitle for this issue.
We suspect that a significant part of the confusion in the

scientific community about “Quantum Materials” may come
from the fact that the term has made its appearance in the
scientific lexicon only recently. Many of these materials and
their study have been around for a while, but research in this
area is growing dramatically at the present time. You know
from your own research which chemical or physical character-
istics of a material or a molecule require a detailed
consideration of electron wave functions and their surround-
ings and which do not. You could say this about quantum
materials, paraphrased from another field entirely: “I will not
endeavor to provide a precise definition of what a quantum
material is, but I know one when I see it.” Examples of
quantum materials that you may generally be familiar with are
those that display the quantum Hall effect or super-
conductivity, topological insulators, spin liquids, qubits,
quantum sensors, or quantum dots. On the atomic scale,
interactions of four fundamental degrees of freedom in
quantum materialslattice, charge, orbital, and spinare
dynamically intertwined to result in a wide array of often
complex electronic states. The intention of this collection is for

some of the people who work at the border between chemistry
and physics to provide information and insights that we hope
will help to bring more chemists into this exciting field.
The appeal of working in the quantum materials area at this

point in time is largely due to the complexity and emergent
properties of quantum materials and how they challenge our
understanding of the properties of matter, but the more
practical among us reasonably argue that quantum materials
with exotic electronic properties may enable completely new
applicationsengendering novel routes to perform quantum
computation, for example, and thus realizing a long-term
technological dream. In fact, in some circles, where we are in
the development of computing technologies based on quantum
materials is at the beginning of “the second quantum
revolution”. Thus, quantum materials in the 21st century,
like semiconductors in the 20th century, which transformed
computation and information technology, will potentially
revolutionize information, sensing, energy, and related
technologies. Finally, as has been the case over and over
again in science, how this field continues to evolve, if we have
the foresight to keep it going, has the possibility to result in a
huge future economic benefit.
Classical solid-state materials display properties whose most

important characteristics can be best described based on the
classical behavior of particles or a low level quantum
mechanical treatment of electrons. Ionic motion in solids, for
example, the topic of many state-of-the-art studies, can be
considered as being classical materials physics because it can
primarily be explained via an electrostatic-based model for
interactions, even though a quantum-mechanics-based descrip-
tion of the electronic states of the systems may be required for
a full understanding of the ionic motion. Similarly, the
understanding of hybrid perovskites does not require physics
beyond that of conventional semiconductors, but a consid-
eration of electron wave functions may be helpful. Quantum
materials, however, display more esoteric but manifestly real
quantum effects, such as quantum fluctuations, quantum
entanglement, quantum coherence, and the dependence of
properties on the topology of the quantum mechanical wave
functions. A dramatic example of esoteric quantum-mechan-
ical-derived character is found in “topological insulators”, for
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Quantum Materials & forms of order

symmetry-protected topological phases

[scanning SQUID on graphene: Marguerite,…, Zeldov, Nature (2019)
ARPES on Bi2Se3: Wray, …, Hasan, Nat Phys (2010)]
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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be direction-independent (Supplementary Fig. 5). This magnetic 
field scale seems to represent a general energy scale for correlated 
uranium compounds: weak anomalies are observed in the ferro-
magnetic superconductor UCoGe (ref. 16), whereas a large magneti-
zation jump occurs in the hidden-order compound URu2Si2 (ref. 17).

As Hm limits the SCRE phase, it gives rise to an even more star-
tling form of superconductivity. Sweeping magnetic fields through 
the angular range of θ = 20–40° from the b axis towards the c axis 
reveals a superconducting phase inside the field-polarized state 
SCFP at high H (Fig. 3). The onset field of the SCFP phase precisely 
follows the angle dependence of Hm, while the upper critical field 
goes through a dome, with the maximum value exceeding 65 T, the 
maximum field possible in our measurements. This new supercon-
ducting phase largely exceeds the magnetic field range of all known 
field-induced superconductors3–5,10. Owing to its shared phase 
boundary with the magnetic transition, this superconducting phase 
tolerates a rather large angular range of offsets from the b–c rotation 
plane. However, it does not appear when the field is rotated from the 
b axis to the a axis.

Having established the field limits and angle dependence of the 
SCFP phase, we turn to its temperature stability (Fig. 4). The onset 
field has almost no temperature dependence, again following Hm, 
while the upper critical field of the SCFP phase disappears near 1.6 K, 
similar to the zero-field superconducting critical temperature. This 
suggests that although it is stabilized at a remarkably high field, the 
new superconducting phase involves a similar pairing energy scale 
to the zero-field superconductor.

The mechanism responsible for the large magnetic field and 
temperature stability of the SCFP phase is unclear. A natural candi-
date is the Jaccarino–Peter effect used to describe other re-entrant 

superconductors9. This antiferromagnetic type of exchange inter-
action can lead to an internal magnetic field that is opposite the 
external magnetic field, resulting in a much smaller total magnetic 
field. This compensation mechanism has successfully explained 
the field-induced superconductivity in Chevrel-phase compounds 
and organic superconductors3–5, but it probably does not apply to 
the SCFP phase of UTe2, which lacks the requisite localized atomic 
moments. Furthermore, SCFP persists over a wider field–angle range 
than is typical of the compensation effect18.

The temperature dependence of the SCFP phase and its close 
relationship with the magnetic transition are reminiscent of the 
field-induced superconducting phase in URhGe, which has been 
attributed to ferromagnetic spin fluctuations associated with the 
competition of spin alignment between two weakly anisotropic 
axes. In URhGe, a magnetic field transverse to the direction of the 
ordered magnetic moments leads to the collapse of the Ising fer-
romagnetism; this instability enhances ferromagnetic fluctuations, 
which in turn induce superconductivity7.

UTe2, however, is not ferromagnetic. Nevertheless, the simi-
larities between UTe2 and the ferromagnetic superconductors with 
regard to the relationship between the preferred magnetic axis and 
the direction of high Hc2 (ref. 6) suggest that strong spin fluctua-
tions transverse to the preferred orientation or easy axis of the mag-
netic moment play a central role in these superconducting phases7. 
The Hc2 values and directionality in UTe2 can thus be understood 
in the following manner. Starting from zero magnetic field, super-
conductivity is most resilient to a magnetic field applied along the 
b axis, which is perpendicular to the easy magnetic a axis. A mag-
netic field applied along the b axis thus induces spin fluctuations 
that stabilize superconductivity against field-induced pair breaking. 
At 34.5 T, however, a magnetic phase transition occurs, and mag-
netic moments rotate from the a axis to the b axis. In the high-field-
polarized phase, a magnetic field along the b axis no longer induces 
transverse spin fluctuations, and superconductivity is suppressed 
completely. However, it is possible to induce transverse spin fluctua-
tions by applying a magnetic field along the c axis. When viewed as 
a vector sum of fields along the b and c axes (Fig. 3), it is clear that 
Hb stabilizes the magnetic phase, while a range of Hc strength val-
ues stabilize superconductivity with the highest re-entrant magnetic 
field values observed.

This ferromagnetic fluctuation scenario is qualitatively con-
sistent with the wider picture of field-induced superconducting  
phases in UTe2, yet a very important distinction exists between 
the SCFP phase and the field-induced superconducting phase in 
URhGe: the SCFP phase exists only in the field-polarized state.  
This challenges the current theory proposed for URhGe,  
which allows superconductivity to exist on both sides of the  
phase boundary7,19,20.

Through the suppression of the orbital limit, reduced dimen-
sionality has been theorized to stabilize high-field superconductiv-
ity21. A model proposed by Lebed and Sepper8 invoking spin-triplet 
pairing predicts re-entrant superconductivity at very high magnetic 
fields applied transverse to the axis of a quasi-one-dimensional 
conductor. The field-induced lower dimensionality is field–angle 
dependent and facilitates the recovery of the zero-field supercon-
ducting critical temperature, as we observe in SCFP (Figs. 3 and 4). 
The possibility that field-stabilizing effects may also exist in quasi-
two-dimensional superconductors21 suggests that high-field dimen-
sionality is a useful starting point for understanding the SCFP phase. 
Furthermore, the suppression of the orbital limit permits supercon-
ductivity in a pure material to survive in any magnetic field, making 
UTe2 an exciting basis for further testing of the limits of high-field-
boosted superconductivity.

The existence of the SCFP phase in only the field-polarized state, 
and in such a high magnetic field, suggests that the superconducting 
state probably has odd parity with time-reversal symmetry breaking. 
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Fig. 1 | Magnetic field-induced superconducting and polarized phases 
of UTe2. a, Sketch of how the magnetic field is applied with respect to the 
three crystallographic axes of UTe2. b, Top view of the sample platform 
with a two-axis rotator used in d.c. field measurements to achieve the 
best alignment. c, Magnetic field–angle phase diagram showing the three 
superconducting phases SCPM, SCRE and SCFP. FP is the field-polarized 
phase. The magnetic field is rotated within the a–b and b–c planes. The 
critical field values of the SCPM and SCRE phases are based on d.c. field 
measurements, and those of the SCFP and FP phases are based on pulsed 
field measurements. The SCRE phase was not observed for angles of θ larger 
than 3.9° in the b–c plane (Supplementary Fig. 1). The dashed lines are 
guides to the eye.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
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direction from the constriction (anticlockwise for holes in Fig. 1c) with 
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At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).
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along the graphene boundaries and is observed over a wide range of 
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For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
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resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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a

b
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.
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others. Classically computing this probability distribution becomes 
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often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
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Information), which is the mean of the simulated probabilities of the 
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computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-



Quantum Design
artificial Kondo  

lattice

Materials by design: van der Waals LEGO

[van der Waals Lego: Geim & Grigorieva,  Nature (2013)
twisted bilayer graphene: Jarillo-Herrero et al Nature (2018)

STM on TaS2: Liljeroth et al Nature (2021)]

twisttronics

4

0

0.1

0.2

0.3

-3 -2 -1 0 1 2 3

T=70mK
M1, θ=1.16�

-4 -3 -2 n/(ns/4) +2 +3 +4

0.1

0.2

0.3

0.4

0.5

0.6

-1.8 -1.6 -1.4 -1.2

1

2

3

-1.8 -1.6 -1.4 -1.2 -1 -0.8

G
2
(m
S)

n (1012 cm�2)

B?=0T
B?=0.4T

0

0.1

0.2

0.3

-3 -2 -1 0 1 2 3

a

T
(K
)

n (1012 cm�2)

0.1

0.2

0.3

0.4

0.5

0.6

-1.8 -1.6 -1.4 -1.2

048b Rxx (kΩ)

M1, θ=1.16�

Mott

SC SC

Metal Metal

T
(K
)

n (1012 cm�2)

1

2

3

-1.8 -1.6 -1.4 -1.2 -1 -0.8

0510c Rxx (kΩ)

Mott

SC

MetalMetal

M2, θ=1.05�

FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
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density n and temperature T . Both devices show two
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is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
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plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Vg

Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4T, signaling the onset of superconductivity. Measurements are taken at T = 70mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4T (blue trace). The traces show the typical
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plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-
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Figure S1: Colored micrograph of the sample, with measurement schematic. The central
metallic island (bright) is connected to the circuit through QPCs formed by field effect in
a buried two-dimensional electron gas (dark grey) using surface split gates (green). The
voltage Vg, used to tune the metallic island at charge degeneracy, is applied to a capacitively
coupled plunger gate (yellow). Note that the voltages applied to the two lateral gates (yellow
and uncolored) are sufficiently negative to deplete the two-dimensional electron gas under-
neath (except for electronic thermometry and characterization purposes). Due to the strong
perpendicular magnetic field B = 2.7T, the current propagates along spin-polarized edge
channels (red lines) of the integer quantum Hall effect (only the relevant outermost edge
channel is shown).
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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developed fast, high-fidelity gates that can be executed simultaneously 
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To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
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Figure 1 | Current flows along the edge in the QSH regime. a, Sketch of the
measurement. The magnetic field (red) generated by the current (blue) is
measured by detecting the flux through the SQUID’s pickup loop.
b, Schematic of the Hall bar. c, Two-terminal resistance R2T of H1 versus
top-gate voltage VTG. d,e, Magnetic images at VTG as indicated in c
measured on H1. In d a 20 µm scale bar (black), the outline of the Hall bar
mesa (white dashed line) and a sketch of the pickup loop (black) are
included; grey arrow indicates the x-position of the profiles in Fig. 2. In e an
outline of the top gate (grey dashed line) is included. f–i, x-component (f,g)
and y-component (h,i) of the two-dimensional current density obtained
from the current inversion of the magnetic images in d,e respectively. The
magnetic images and the current densities are normalized to the applied
current.

of the pickup loop, noise, and the finite image size (Supplementary
Information). All results presented here are qualitatively robust
against these systematic errors.

Having compared the extreme cases of bulk- and edge-
dominated transport at low and maximum R2T, respectively, we
next explore the interplay between them. The top-gate voltage,
VTG, tunes the Fermi level from the valence band through the bulk
energy gap into the conduction band and thereby changes the bulk
conductance, with the bulk being insulating when the Fermi level
is in the gap. For a range of VTG, we find that edge conduction
coexists with bulk conduction (Fig. 2a–d). In Fig. 2e we show the
percentage of current flowing along the edges and bulk obtained
by modelling the current profiles shown in Fig. 2c,d and profiles
at additional values of VTG as a sum of three contributions (Fig. 2f)
determinedwhere either the bulk or the edges clearly dominate. The
errors are difficult to evaluate (Supplementary Information), butwe

can identify the presence of a distinct edge current even when the
edge carries an order of magnitude less total current than the bulk.
Qualitatively, we find that the current flow changes gradually from
edge-dominated to bulk-dominated when moving away from the
maximum inR2T, with a large region of coexistence of edge channels
and bulk conduction.

If the bulk and the edges were three uncoupled parallel resistors,
we would be able to calculate their resistances by dividing R2T by
the respective current percentage. In Fig. 2g we plot the effective
resistances of the top edge and bulk obtained from this model,
omitting the resistance of the bottom edge from the figure for
clarity. The bulk resistance resembles an insulator with steep flanks
as a function of VTG. Interestingly, the resistance of the top edge
is rather flat for the VTG range at which it is lower or comparable
to the bulk resistance.

So far, the coupling between the edges and the bulk is largely
unexplored, both theoretically and experimentally. It is outside the
scope of this work to establish a model for their interplay; however,
the observation of their coexistence and the effective resistance
may provide input into models of their coupling. Possible relevant
factors include a mismatch in k-space between the edge and the
bulk states and the formation of a depletion region where the edge
channel is laterally localized.

Comparing the top and bottom paths provides further infor-
mation. The bottom path has several edge segments separated by
contacts and ungated parts of the Hall bar that have a low resistance
(based on R2T at VTG = 0V) and therefore should act like contacts.
If the edge channels were fully ballistic, each edge segment would
contribute h/e2 to the resistance8. Hence, the top and bottom path
would have resistances of h/e2 and 5h/e2 respectively, a ratio of
1:5. However, the maximum R2T ∼ 200 k! ≫ h/e2 reveals that the
edge channels are not ballistic over their full length, as is typical
for this size of device7,17. In the case of fully diffusive edges, the
ratio is expected to be 1:1.6 based on the path lengths, expecting
that the resistance of the ungated segments is negligible compared
with the bottom path. H1 and H2 showed ratios close to 1:8 and
1:1 respectively between the bottom- and top-edge current (Figs 2e
and 3c). These results are consistent with ballistic segments of edge
channels of several micrometres in length, interrupted by scattering
sites8 whose location and number are expected to be random and
to vary between samples.

Other factors may also affect the variability between H1 and H2.
For example, the difference in quantumwell thickness and substrate
(Supplementary Information) and hence band structure between
H1 and H2 and the slight difference in temperature (3 K for H1, 4 K
for H2) causes more residual bulk conduction in H2 at maximum
R2T. When R2T decreases in H1, the percentage of current along the
bottom edge initially increases (Fig. 2e). This occurs because more
current arrives at the bottom edge through the bulk of the device.

The profiles shown in Fig. 2 correspond to a fixed x-position
along the Hall bar. However, at values of VTG corresponding to the
flanks of the resistance peak the amount of current flowing along the
edge changes along the Hall bar and some inhomogeneity is present
(Supplementary Information for images). This could be caused by
disordered charge in the gate dielectric, inhomogeneous capacitive
coupling of the gate to the Hall bar, disorder in the doping layer or
inhomogeneity of the quantumwell thickness.

In a different thermal cycle of H1, we observed pronounced
inhomogeneity, which we believe was caused by inhomogeneous
charge in the gate dielectric originating from an unintentional
electrical shock of the top gate. Remarkably, R2T was significantly
lower, but still exhibiting a peak that could falsely be interpreted as
originating from a closer to ideal edge channel. However, imaging
reveals that inhomogeneity over tens of micrometres causes the
bulk to remain conductive in parts of the Hall bar at every VTG,
and that each region of the Hall bar shows well-defined edge
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Current flows along the edge in the QSH regime. a, Sketch of the
measurement. The magnetic field (red) generated by the current (blue) is
measured by detecting the flux through the SQUID’s pickup loop.
b, Schematic of the Hall bar. c, Two-terminal resistance R2T of H1 versus
top-gate voltage VTG. d,e, Magnetic images at VTG as indicated in c
measured on H1. In d a 20 µm scale bar (black), the outline of the Hall bar
mesa (white dashed line) and a sketch of the pickup loop (black) are
included; grey arrow indicates the x-position of the profiles in Fig. 2. In e an
outline of the top gate (grey dashed line) is included. f–i, x-component (f,g)
and y-component (h,i) of the two-dimensional current density obtained
from the current inversion of the magnetic images in d,e respectively. The
magnetic images and the current densities are normalized to the applied
current.

of the pickup loop, noise, and the finite image size (Supplementary
Information). All results presented here are qualitatively robust
against these systematic errors.

Having compared the extreme cases of bulk- and edge-
dominated transport at low and maximum R2T, respectively, we
next explore the interplay between them. The top-gate voltage,
VTG, tunes the Fermi level from the valence band through the bulk
energy gap into the conduction band and thereby changes the bulk
conductance, with the bulk being insulating when the Fermi level
is in the gap. For a range of VTG, we find that edge conduction
coexists with bulk conduction (Fig. 2a–d). In Fig. 2e we show the
percentage of current flowing along the edges and bulk obtained
by modelling the current profiles shown in Fig. 2c,d and profiles
at additional values of VTG as a sum of three contributions (Fig. 2f)
determinedwhere either the bulk or the edges clearly dominate. The
errors are difficult to evaluate (Supplementary Information), butwe

can identify the presence of a distinct edge current even when the
edge carries an order of magnitude less total current than the bulk.
Qualitatively, we find that the current flow changes gradually from
edge-dominated to bulk-dominated when moving away from the
maximum inR2T, with a large region of coexistence of edge channels
and bulk conduction.

If the bulk and the edges were three uncoupled parallel resistors,
we would be able to calculate their resistances by dividing R2T by
the respective current percentage. In Fig. 2g we plot the effective
resistances of the top edge and bulk obtained from this model,
omitting the resistance of the bottom edge from the figure for
clarity. The bulk resistance resembles an insulator with steep flanks
as a function of VTG. Interestingly, the resistance of the top edge
is rather flat for the VTG range at which it is lower or comparable
to the bulk resistance.

So far, the coupling between the edges and the bulk is largely
unexplored, both theoretically and experimentally. It is outside the
scope of this work to establish a model for their interplay; however,
the observation of their coexistence and the effective resistance
may provide input into models of their coupling. Possible relevant
factors include a mismatch in k-space between the edge and the
bulk states and the formation of a depletion region where the edge
channel is laterally localized.

Comparing the top and bottom paths provides further infor-
mation. The bottom path has several edge segments separated by
contacts and ungated parts of the Hall bar that have a low resistance
(based on R2T at VTG = 0V) and therefore should act like contacts.
If the edge channels were fully ballistic, each edge segment would
contribute h/e2 to the resistance8. Hence, the top and bottom path
would have resistances of h/e2 and 5h/e2 respectively, a ratio of
1:5. However, the maximum R2T ∼ 200 k! ≫ h/e2 reveals that the
edge channels are not ballistic over their full length, as is typical
for this size of device7,17. In the case of fully diffusive edges, the
ratio is expected to be 1:1.6 based on the path lengths, expecting
that the resistance of the ungated segments is negligible compared
with the bottom path. H1 and H2 showed ratios close to 1:8 and
1:1 respectively between the bottom- and top-edge current (Figs 2e
and 3c). These results are consistent with ballistic segments of edge
channels of several micrometres in length, interrupted by scattering
sites8 whose location and number are expected to be random and
to vary between samples.

Other factors may also affect the variability between H1 and H2.
For example, the difference in quantumwell thickness and substrate
(Supplementary Information) and hence band structure between
H1 and H2 and the slight difference in temperature (3 K for H1, 4 K
for H2) causes more residual bulk conduction in H2 at maximum
R2T. When R2T decreases in H1, the percentage of current along the
bottom edge initially increases (Fig. 2e). This occurs because more
current arrives at the bottom edge through the bulk of the device.

The profiles shown in Fig. 2 correspond to a fixed x-position
along the Hall bar. However, at values of VTG corresponding to the
flanks of the resistance peak the amount of current flowing along the
edge changes along the Hall bar and some inhomogeneity is present
(Supplementary Information for images). This could be caused by
disordered charge in the gate dielectric, inhomogeneous capacitive
coupling of the gate to the Hall bar, disorder in the doping layer or
inhomogeneity of the quantumwell thickness.

In a different thermal cycle of H1, we observed pronounced
inhomogeneity, which we believe was caused by inhomogeneous
charge in the gate dielectric originating from an unintentional
electrical shock of the top gate. Remarkably, R2T was significantly
lower, but still exhibiting a peak that could falsely be interpreted as
originating from a closer to ideal edge channel. However, imaging
reveals that inhomogeneity over tens of micrometres causes the
bulk to remain conductive in parts of the Hall bar at every VTG,
and that each region of the Hall bar shows well-defined edge
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Current flows along the edge in the QSH regime. a, Sketch of the
measurement. The magnetic field (red) generated by the current (blue) is
measured by detecting the flux through the SQUID’s pickup loop.
b, Schematic of the Hall bar. c, Two-terminal resistance R2T of H1 versus
top-gate voltage VTG. d,e, Magnetic images at VTG as indicated in c
measured on H1. In d a 20 µm scale bar (black), the outline of the Hall bar
mesa (white dashed line) and a sketch of the pickup loop (black) are
included; grey arrow indicates the x-position of the profiles in Fig. 2. In e an
outline of the top gate (grey dashed line) is included. f–i, x-component (f,g)
and y-component (h,i) of the two-dimensional current density obtained
from the current inversion of the magnetic images in d,e respectively. The
magnetic images and the current densities are normalized to the applied
current.

of the pickup loop, noise, and the finite image size (Supplementary
Information). All results presented here are qualitatively robust
against these systematic errors.

Having compared the extreme cases of bulk- and edge-
dominated transport at low and maximum R2T, respectively, we
next explore the interplay between them. The top-gate voltage,
VTG, tunes the Fermi level from the valence band through the bulk
energy gap into the conduction band and thereby changes the bulk
conductance, with the bulk being insulating when the Fermi level
is in the gap. For a range of VTG, we find that edge conduction
coexists with bulk conduction (Fig. 2a–d). In Fig. 2e we show the
percentage of current flowing along the edges and bulk obtained
by modelling the current profiles shown in Fig. 2c,d and profiles
at additional values of VTG as a sum of three contributions (Fig. 2f)
determinedwhere either the bulk or the edges clearly dominate. The
errors are difficult to evaluate (Supplementary Information), butwe

can identify the presence of a distinct edge current even when the
edge carries an order of magnitude less total current than the bulk.
Qualitatively, we find that the current flow changes gradually from
edge-dominated to bulk-dominated when moving away from the
maximum inR2T, with a large region of coexistence of edge channels
and bulk conduction.

If the bulk and the edges were three uncoupled parallel resistors,
we would be able to calculate their resistances by dividing R2T by
the respective current percentage. In Fig. 2g we plot the effective
resistances of the top edge and bulk obtained from this model,
omitting the resistance of the bottom edge from the figure for
clarity. The bulk resistance resembles an insulator with steep flanks
as a function of VTG. Interestingly, the resistance of the top edge
is rather flat for the VTG range at which it is lower or comparable
to the bulk resistance.

So far, the coupling between the edges and the bulk is largely
unexplored, both theoretically and experimentally. It is outside the
scope of this work to establish a model for their interplay; however,
the observation of their coexistence and the effective resistance
may provide input into models of their coupling. Possible relevant
factors include a mismatch in k-space between the edge and the
bulk states and the formation of a depletion region where the edge
channel is laterally localized.

Comparing the top and bottom paths provides further infor-
mation. The bottom path has several edge segments separated by
contacts and ungated parts of the Hall bar that have a low resistance
(based on R2T at VTG = 0V) and therefore should act like contacts.
If the edge channels were fully ballistic, each edge segment would
contribute h/e2 to the resistance8. Hence, the top and bottom path
would have resistances of h/e2 and 5h/e2 respectively, a ratio of
1:5. However, the maximum R2T ∼ 200 k! ≫ h/e2 reveals that the
edge channels are not ballistic over their full length, as is typical
for this size of device7,17. In the case of fully diffusive edges, the
ratio is expected to be 1:1.6 based on the path lengths, expecting
that the resistance of the ungated segments is negligible compared
with the bottom path. H1 and H2 showed ratios close to 1:8 and
1:1 respectively between the bottom- and top-edge current (Figs 2e
and 3c). These results are consistent with ballistic segments of edge
channels of several micrometres in length, interrupted by scattering
sites8 whose location and number are expected to be random and
to vary between samples.

Other factors may also affect the variability between H1 and H2.
For example, the difference in quantumwell thickness and substrate
(Supplementary Information) and hence band structure between
H1 and H2 and the slight difference in temperature (3 K for H1, 4 K
for H2) causes more residual bulk conduction in H2 at maximum
R2T. When R2T decreases in H1, the percentage of current along the
bottom edge initially increases (Fig. 2e). This occurs because more
current arrives at the bottom edge through the bulk of the device.

The profiles shown in Fig. 2 correspond to a fixed x-position
along the Hall bar. However, at values of VTG corresponding to the
flanks of the resistance peak the amount of current flowing along the
edge changes along the Hall bar and some inhomogeneity is present
(Supplementary Information for images). This could be caused by
disordered charge in the gate dielectric, inhomogeneous capacitive
coupling of the gate to the Hall bar, disorder in the doping layer or
inhomogeneity of the quantumwell thickness.

In a different thermal cycle of H1, we observed pronounced
inhomogeneity, which we believe was caused by inhomogeneous
charge in the gate dielectric originating from an unintentional
electrical shock of the top gate. Remarkably, R2T was significantly
lower, but still exhibiting a peak that could falsely be interpreted as
originating from a closer to ideal edge channel. However, imaging
reveals that inhomogeneity over tens of micrometres causes the
bulk to remain conductive in parts of the Hall bar at every VTG,
and that each region of the Hall bar shows well-defined edge
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Current flows along the edge in the QSH regime. a, Sketch of the
measurement. The magnetic field (red) generated by the current (blue) is
measured by detecting the flux through the SQUID’s pickup loop.
b, Schematic of the Hall bar. c, Two-terminal resistance R2T of H1 versus
top-gate voltage VTG. d,e, Magnetic images at VTG as indicated in c
measured on H1. In d a 20 µm scale bar (black), the outline of the Hall bar
mesa (white dashed line) and a sketch of the pickup loop (black) are
included; grey arrow indicates the x-position of the profiles in Fig. 2. In e an
outline of the top gate (grey dashed line) is included. f–i, x-component (f,g)
and y-component (h,i) of the two-dimensional current density obtained
from the current inversion of the magnetic images in d,e respectively. The
magnetic images and the current densities are normalized to the applied
current.

of the pickup loop, noise, and the finite image size (Supplementary
Information). All results presented here are qualitatively robust
against these systematic errors.

Having compared the extreme cases of bulk- and edge-
dominated transport at low and maximum R2T, respectively, we
next explore the interplay between them. The top-gate voltage,
VTG, tunes the Fermi level from the valence band through the bulk
energy gap into the conduction band and thereby changes the bulk
conductance, with the bulk being insulating when the Fermi level
is in the gap. For a range of VTG, we find that edge conduction
coexists with bulk conduction (Fig. 2a–d). In Fig. 2e we show the
percentage of current flowing along the edges and bulk obtained
by modelling the current profiles shown in Fig. 2c,d and profiles
at additional values of VTG as a sum of three contributions (Fig. 2f)
determinedwhere either the bulk or the edges clearly dominate. The
errors are difficult to evaluate (Supplementary Information), butwe

can identify the presence of a distinct edge current even when the
edge carries an order of magnitude less total current than the bulk.
Qualitatively, we find that the current flow changes gradually from
edge-dominated to bulk-dominated when moving away from the
maximum inR2T, with a large region of coexistence of edge channels
and bulk conduction.

If the bulk and the edges were three uncoupled parallel resistors,
we would be able to calculate their resistances by dividing R2T by
the respective current percentage. In Fig. 2g we plot the effective
resistances of the top edge and bulk obtained from this model,
omitting the resistance of the bottom edge from the figure for
clarity. The bulk resistance resembles an insulator with steep flanks
as a function of VTG. Interestingly, the resistance of the top edge
is rather flat for the VTG range at which it is lower or comparable
to the bulk resistance.

So far, the coupling between the edges and the bulk is largely
unexplored, both theoretically and experimentally. It is outside the
scope of this work to establish a model for their interplay; however,
the observation of their coexistence and the effective resistance
may provide input into models of their coupling. Possible relevant
factors include a mismatch in k-space between the edge and the
bulk states and the formation of a depletion region where the edge
channel is laterally localized.

Comparing the top and bottom paths provides further infor-
mation. The bottom path has several edge segments separated by
contacts and ungated parts of the Hall bar that have a low resistance
(based on R2T at VTG = 0V) and therefore should act like contacts.
If the edge channels were fully ballistic, each edge segment would
contribute h/e2 to the resistance8. Hence, the top and bottom path
would have resistances of h/e2 and 5h/e2 respectively, a ratio of
1:5. However, the maximum R2T ∼ 200 k! ≫ h/e2 reveals that the
edge channels are not ballistic over their full length, as is typical
for this size of device7,17. In the case of fully diffusive edges, the
ratio is expected to be 1:1.6 based on the path lengths, expecting
that the resistance of the ungated segments is negligible compared
with the bottom path. H1 and H2 showed ratios close to 1:8 and
1:1 respectively between the bottom- and top-edge current (Figs 2e
and 3c). These results are consistent with ballistic segments of edge
channels of several micrometres in length, interrupted by scattering
sites8 whose location and number are expected to be random and
to vary between samples.

Other factors may also affect the variability between H1 and H2.
For example, the difference in quantumwell thickness and substrate
(Supplementary Information) and hence band structure between
H1 and H2 and the slight difference in temperature (3 K for H1, 4 K
for H2) causes more residual bulk conduction in H2 at maximum
R2T. When R2T decreases in H1, the percentage of current along the
bottom edge initially increases (Fig. 2e). This occurs because more
current arrives at the bottom edge through the bulk of the device.

The profiles shown in Fig. 2 correspond to a fixed x-position
along the Hall bar. However, at values of VTG corresponding to the
flanks of the resistance peak the amount of current flowing along the
edge changes along the Hall bar and some inhomogeneity is present
(Supplementary Information for images). This could be caused by
disordered charge in the gate dielectric, inhomogeneous capacitive
coupling of the gate to the Hall bar, disorder in the doping layer or
inhomogeneity of the quantumwell thickness.

In a different thermal cycle of H1, we observed pronounced
inhomogeneity, which we believe was caused by inhomogeneous
charge in the gate dielectric originating from an unintentional
electrical shock of the top gate. Remarkably, R2T was significantly
lower, but still exhibiting a peak that could falsely be interpreted as
originating from a closer to ideal edge channel. However, imaging
reveals that inhomogeneity over tens of micrometres causes the
bulk to remain conductive in parts of the Hall bar at every VTG,
and that each region of the Hall bar shows well-defined edge
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corresponding quantized conductance is robust against local perturba-
tions and is determined by the bulk Chern number and the bulk-edge 
correspondence.

Global transport measurements of our devices show common 
quantum Hall characteristics—including conductance quantization 
(see Methods and Extended Data Fig. 4)—which are qualitatively consist-
ent with the above principles. However, when inspected microscopi-
cally, we find these principles to be largely violated. A d.c. current Idc 
≈ 1 µA was injected through a 300-nm-wide constriction at the bottom 
edge of sample A (Fig. 1b) and was collected at a top-right contact. 
Figure 1c, d shows the resulting Tac(r) images at two values of the back 
gate voltage Vbg (see Supplementary Information section 1 and Sup-
plementary Video 1 for the range of Vbg). There are two features that 
are independent of Vbg: a large thermal gradient near the constriction, 
which arises from heat that is generated within the constriction and 
then diffuses through the substrate; and an artificial background sig-
nal that outlines the sample topography (see Methods). Notably, Vbg 
-dependent ring-like structures appear along the graphene bounda-
ries, revealing dissipation through phonon emission from individual 
atomic defects11. When Vbg is tuned into the ν = −10 quantum Hall plateau 
(Fig. 1c, at filling factor ν = −10.7) the dissipation occurs along the bot-
tom edge of the sample, in violation of the first principle listed above. 
Tuning Vbg into the quantum Hall plateau transition region (ν = −1.46, 
Fig. 1d), dissipation is observed primarily along the edges rather than in 
the bulk (as demonstrated in particular by the absence of thermal rings 
at the atomic defects along the inner edges of the five square holes), in 
violation of the second principle. Moreover, at high filling factors, the 
dissipation occurs predominantly along the downstream chiral flow 
direction from the constriction (anticlockwise for holes in Fig. 1c) with 
a characteristic decay length of about 15 µm, both in the quantum Hall 
plateaus and in the plateau transition regions (Supplementary Video 1).  

At lower filling factors (Fig. 1d) the dissipation is greatly enhanced in 
both downstream and upstream directions with no visible chirality, 
and extends over the entire length of the edges with no apparent decay 
(Supplementary Information section 1).

Finally, an example of violation of the third principle is demonstrated 
in Fig. 1e. Topologically protected states should be robust against local 
perturbations, and hence positive Vtg—which depletes holes on a scale 
much smaller than the sample size—should not affect global transport 
properties. However, contrary to this, the two-probe resistance R2p of 
a 30-µm sample is profoundly affected by a perturbation on a scale 
of about 50 nm (the tip size). The large increase in R2p(r) occurs only 
along the graphene boundaries and is observed over a wide range of 
Vbg both at quantum Hall plateaus (Supplementary Video 2) and at 
plateau transitions (Fig. 1e). It is also of note that the R2p(r) signal is 
visible along the entire length of the boundaries.

For a closer inspection, we focus on the dashed rectangle in Fig. 1b 
with a square-shaped protrusion in the top-left corner. The higher-
resolution Tdc(r) image (Fig. 2a) reveals a disordered heat signal con-
centrated along two separate contours. The outer contour consists of 
a series of thermal rings centred along the physical edge of graphene 
(dashed line). The inner contour, with arc-shaped features, is visible 
further inside the sample. Critically, the simultaneously acquired scan-
ning gate R2p(r) signal (Fig. 2b) mimics precisely the Tdc(r) signal along 
the inner contour, while showing no response along the outer contour 
or elsewhere. This difference indicates that the inner and outer contours 
arise from fundamentally different mechanisms.

To decipher the different mechanisms, we consider a diffusive  
system in steady state with strong electron–phonon coupling.  
In this system, dissipation is described by local Joule heating 

r r J r E r ṙ ̇P W Q( ) = ( ) = ( ) ⋅ ( ) = ( ) , where power P is the rate of work Ẇ   
per unit volume, performed by current density J driven by an electric 
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Fig. 1 | Imaging the violation of the quantum Hall topological protection.  
a, Schematic of the measurement setup, showing the hBN/graphene/hBN 
heterostructure and scanning tSOT. b, Optical image of device A patterned 
with several contacts and five square holes in the centre. A d.c. current, Idc, is 
driven through the narrow bottom constrictions and drained at the top-right 
contact (arrows) in presence of an applied field Bz = 1.0 T at 4.2 K. c, Thermal 
image of Tac(r) in the vicinity of the ν = −10 quantum Hall plateau at  
Vbg = −6.0 V (ν = −10.7), Vtg = 8 V and Idc = 1.5 µA (R I = 10nW2p dc

2 ), revealing phonon 

emission from individual atomic defects in the form of rings along the bottom-
right graphene boundary (see Supplementary Video 1). d, Same as c but in the 
quantum Hall plateau transition region at Vbg = −2.5 V (ν = −1.46) and Idc = 0.87 µA 
(R I = 10nW2p dc

2 ), showing enhanced dissipation along all edges with no visible 
dissipation in the bulk. e, Scanning gate image of R2p(r) acquired 
simultaneously with d, revealing considerable tip-induced enhancement of the 
two-probe sample resistance along the edges.
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Figure 1 | Current flows along the edge in the QSH regime. a, Sketch of the
measurement. The magnetic field (red) generated by the current (blue) is
measured by detecting the flux through the SQUID’s pickup loop.
b, Schematic of the Hall bar. c, Two-terminal resistance R2T of H1 versus
top-gate voltage VTG. d,e, Magnetic images at VTG as indicated in c
measured on H1. In d a 20 µm scale bar (black), the outline of the Hall bar
mesa (white dashed line) and a sketch of the pickup loop (black) are
included; grey arrow indicates the x-position of the profiles in Fig. 2. In e an
outline of the top gate (grey dashed line) is included. f–i, x-component (f,g)
and y-component (h,i) of the two-dimensional current density obtained
from the current inversion of the magnetic images in d,e respectively. The
magnetic images and the current densities are normalized to the applied
current.

of the pickup loop, noise, and the finite image size (Supplementary
Information). All results presented here are qualitatively robust
against these systematic errors.

Having compared the extreme cases of bulk- and edge-
dominated transport at low and maximum R2T, respectively, we
next explore the interplay between them. The top-gate voltage,
VTG, tunes the Fermi level from the valence band through the bulk
energy gap into the conduction band and thereby changes the bulk
conductance, with the bulk being insulating when the Fermi level
is in the gap. For a range of VTG, we find that edge conduction
coexists with bulk conduction (Fig. 2a–d). In Fig. 2e we show the
percentage of current flowing along the edges and bulk obtained
by modelling the current profiles shown in Fig. 2c,d and profiles
at additional values of VTG as a sum of three contributions (Fig. 2f)
determinedwhere either the bulk or the edges clearly dominate. The
errors are difficult to evaluate (Supplementary Information), butwe

can identify the presence of a distinct edge current even when the
edge carries an order of magnitude less total current than the bulk.
Qualitatively, we find that the current flow changes gradually from
edge-dominated to bulk-dominated when moving away from the
maximum inR2T, with a large region of coexistence of edge channels
and bulk conduction.

If the bulk and the edges were three uncoupled parallel resistors,
we would be able to calculate their resistances by dividing R2T by
the respective current percentage. In Fig. 2g we plot the effective
resistances of the top edge and bulk obtained from this model,
omitting the resistance of the bottom edge from the figure for
clarity. The bulk resistance resembles an insulator with steep flanks
as a function of VTG. Interestingly, the resistance of the top edge
is rather flat for the VTG range at which it is lower or comparable
to the bulk resistance.

So far, the coupling between the edges and the bulk is largely
unexplored, both theoretically and experimentally. It is outside the
scope of this work to establish a model for their interplay; however,
the observation of their coexistence and the effective resistance
may provide input into models of their coupling. Possible relevant
factors include a mismatch in k-space between the edge and the
bulk states and the formation of a depletion region where the edge
channel is laterally localized.

Comparing the top and bottom paths provides further infor-
mation. The bottom path has several edge segments separated by
contacts and ungated parts of the Hall bar that have a low resistance
(based on R2T at VTG = 0V) and therefore should act like contacts.
If the edge channels were fully ballistic, each edge segment would
contribute h/e2 to the resistance8. Hence, the top and bottom path
would have resistances of h/e2 and 5h/e2 respectively, a ratio of
1:5. However, the maximum R2T ∼ 200 k! ≫ h/e2 reveals that the
edge channels are not ballistic over their full length, as is typical
for this size of device7,17. In the case of fully diffusive edges, the
ratio is expected to be 1:1.6 based on the path lengths, expecting
that the resistance of the ungated segments is negligible compared
with the bottom path. H1 and H2 showed ratios close to 1:8 and
1:1 respectively between the bottom- and top-edge current (Figs 2e
and 3c). These results are consistent with ballistic segments of edge
channels of several micrometres in length, interrupted by scattering
sites8 whose location and number are expected to be random and
to vary between samples.

Other factors may also affect the variability between H1 and H2.
For example, the difference in quantumwell thickness and substrate
(Supplementary Information) and hence band structure between
H1 and H2 and the slight difference in temperature (3 K for H1, 4 K
for H2) causes more residual bulk conduction in H2 at maximum
R2T. When R2T decreases in H1, the percentage of current along the
bottom edge initially increases (Fig. 2e). This occurs because more
current arrives at the bottom edge through the bulk of the device.

The profiles shown in Fig. 2 correspond to a fixed x-position
along the Hall bar. However, at values of VTG corresponding to the
flanks of the resistance peak the amount of current flowing along the
edge changes along the Hall bar and some inhomogeneity is present
(Supplementary Information for images). This could be caused by
disordered charge in the gate dielectric, inhomogeneous capacitive
coupling of the gate to the Hall bar, disorder in the doping layer or
inhomogeneity of the quantumwell thickness.

In a different thermal cycle of H1, we observed pronounced
inhomogeneity, which we believe was caused by inhomogeneous
charge in the gate dielectric originating from an unintentional
electrical shock of the top gate. Remarkably, R2T was significantly
lower, but still exhibiting a peak that could falsely be interpreted as
originating from a closer to ideal edge channel. However, imaging
reveals that inhomogeneity over tens of micrometres causes the
bulk to remain conductive in parts of the Hall bar at every VTG,
and that each region of the Hall bar shows well-defined edge
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
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F P x= 2 " ( )# − 1 (1)n
i iXEB
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10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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1 Introduction

1.1 Emulators of Quantum Materials

Ever since R. Feynman’s visionary proposal1, quantum simulators of many-body system have
gained enormous attention. By exploiting the topological nature of emergent Majorana fermions
and utilizing charging e�ects, it is possible to construct arrays of mesoscopic quantum devices2–4

that realize unconventional strongly correlated and topologically ordered quantum phases5,6. These
phases are not only interesting for mere academical reasons but are also candidates for realizing,
e.g., quantum spin liquids (QSL) which are notoriously di�cult to observe in nature7. Furthermore,
they may be employed to emulate fractionalized Fermi liquids (FL⇤) which are exotic candidates to
explain Fermi surface reconstruction 8,9 in cuprates10 and heavy fermion materials11. Topologically
ordered phases are equally interesting for fault tolerant quantum computing which is a major topic
in the development of quantum computers. This circumstance has a couple of reasons. First,
the groundstate is protected against local perturbation due to the topological order, making these
devices perfect contenders for stable quantum memory12. On the other hand, the appearance of
anyons in such phases opens a route toward topological quantum computing by exploiting their
braiding statistics to implement quantum gates and perform calculations13,14.

Figure 1 shows how closely related these topics are and which rich physics connects to them.
Quantum materials, especially topological superconductors (top S.C.), form the hardware for quan-
tum information devices like quantum computers. Quantum computers themselves rely on devel-
oping error correction codes for which lattice gauge theory is an important mathematical tool.
The mathematics used in these two topics, however, is very similar to the one appearing in the
description of QSLs and FL⇤s, which itself belong, among other things like unconventional super-
conductors, to the realm of quantum materials, where “the circle” closes.
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Figure 1: Sketch of the relations between di�erent fields of physics in the framework of this thesis
project. The red area encloses all topics directly or indirectly related to Quantum Materials. The
blue area does the same for Quantum Information Science.
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FIG. 1: a) Schematic of experimental setup. The greey
box denotes the MCPB with the one-dimensional

time-reversal invariant SC (black line) that hosts four
MZMs (yello and red dots). The whole device is couple

to a right and left lead (blue lines). b) Schematic
representation of Hamiltonian (26). The even  + and

odd  − superpositions of the lead electrons are coupled
to the MCPB (square). The angular momentum Ĵ of

the superconducting condensate (blue ellipse) acts as an
e↵ective impurity for the lead electrons. The spin of the
lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow

ellipses). Only when the orbital next to the lead
electrons is occupied do the electrons feel the impurity.

c) Schematic Renormalization Group flow diagram
based on the parameter g defined through the impurity
entropy for N c

g
= 1�2. d) Absolute value of the charge

conductance between the left and right wire in the limit
Es�Ez >> 1.

structure of these phases is by now theoretically well un-
derstood, the additional complexity of strong electronic
correlations leads to much richer physics[7, 8] and is the
object of ongoing research. This particularly concerns
the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order param-
eter.

As a prime example, strong quantum fluctuations of
the superconducting phase in mesoscopic spinless Majo-
rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
recently in the prospect of quantum information [35–39],
and experimentally, in particular in mesoscopic quantum
electronics devices [40–42]. For this symmetry group,
non-Fermi liquid behavior occurs only in the overscreened
multichannel case [43]. The Majorana based topological
Kondo e↵ect is special, inasmuch it realizes an impu-
rity spin transforming under O(M) (where M denotes
the number of Majorana zero modes coupled to exter-
nal leads). Very recently, Majorana-free setups of or-
thogonal [44, 45] and symplectic symmetry [46, 47] were
proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, both orthogonal and
symplectic Kondo models display exotic physics, includ-
ing fingerprints of bound anyons, in the single channel
case, already [48].

Within the superconducting Altland Zirnbauer classes,
there are two non-trivial topological phases in one dimen-
sion. Apart from spinless p-wave superconductors (e.g.,
the“Kitaev chain” [10], class D), there is a spinful p-wave
time reversal invariant topological superconductor (TRI-
TOPS [49], class DIII). In this work, we study TRITOPS
islands in the Coulomb blockade regime and uncover an
unconventional topological Kondo e↵ect of spinful Ma-
jorana fermions. Using Abelian Bosonization, we solve
this problem in the simplest and most relevant case of
two pairs of Majorana edge states coupled to two spin-
ful leads, Fig. 1. We characterize the phase diagram and
demonstrate that the topological Kondo e↵ect of spinful
Majorana fermions is protected by spin-rotation symme-
try, but flows to the fixed point of the spinless topological
Kondo e↵ect in the presence of symmetry breaking per-
turbations. Both fixed points display exotic hallmarks
of non-Fermi liquids. We make numerically and (poten-
tially) experimentally verifiable predictions for thermo-
dynamic and transport signatures of the non-trivial low-
energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [50–53],
in particular regarding its unconventional transport
through Josephson junctions [54–60]. Strong order pa-
rameter fluctuations of the superconducting phase, i.e.
spinful MCPBs in the Coulomb blockade regime, also
gained some attention [51, 57], both in their context as
topological qubits[61], topological Josephson junction ar-
rays [62], and mesoscopic Kondo impurities [63]. At the
same time, to the best of our knowledge, the impact of
strong order parameter fluctuations of the Cooper pair
orientation d̂ in the spin sector was considered only in
Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-

[EJK, Komijani, Coleman, PRB 2020, 
EJK, Coleman, Tsvelik, PRB 2020,

Li, EJK*, Väyrynen*, PRB (L) 2023, 
EJK, Tsvelik, Ann Phys 2023, 

Ren, EJK,  Tsvelik  PRB  2024,
Bollmann, Väyrynen, EJK PRB 2024]
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rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
recently in the prospect of quantum information [35–39],
and experimentally, in particular in mesoscopic quantum
electronics devices [40–42]. For this symmetry group,
non-Fermi liquid behavior occurs only in the overscreened
multichannel case [43]. The Majorana based topological
Kondo e↵ect is special, inasmuch it realizes an impu-
rity spin transforming under O(M) (where M denotes
the number of Majorana zero modes coupled to exter-
nal leads). Very recently, Majorana-free setups of or-
thogonal [44, 45] and symplectic symmetry [46, 47] were
proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, both orthogonal and
symplectic Kondo models display exotic physics, includ-
ing fingerprints of bound anyons, in the single channel
case, already [48].

Within the superconducting Altland Zirnbauer classes,
there are two non-trivial topological phases in one dimen-
sion. Apart from spinless p-wave superconductors (e.g.,
the“Kitaev chain” [10], class D), there is a spinful p-wave
time reversal invariant topological superconductor (TRI-
TOPS [49], class DIII). In this work, we study TRITOPS
islands in the Coulomb blockade regime and uncover an
unconventional topological Kondo e↵ect of spinful Ma-
jorana fermions. Using Abelian Bosonization, we solve
this problem in the simplest and most relevant case of
two pairs of Majorana edge states coupled to two spin-
ful leads, Fig. 1. We characterize the phase diagram and
demonstrate that the topological Kondo e↵ect of spinful
Majorana fermions is protected by spin-rotation symme-
try, but flows to the fixed point of the spinless topological
Kondo e↵ect in the presence of symmetry breaking per-
turbations. Both fixed points display exotic hallmarks
of non-Fermi liquids. We make numerically and (poten-
tially) experimentally verifiable predictions for thermo-
dynamic and transport signatures of the non-trivial low-
energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [50–53],
in particular regarding its unconventional transport
through Josephson junctions [54–60]. Strong order pa-
rameter fluctuations of the superconducting phase, i.e.
spinful MCPBs in the Coulomb blockade regime, also
gained some attention [51, 57], both in their context as
topological qubits[61], topological Josephson junction ar-
rays [62], and mesoscopic Kondo impurities [63]. At the
same time, to the best of our knowledge, the impact of
strong order parameter fluctuations of the Cooper pair
orientation d̂ in the spin sector was considered only in
Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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1 Introduction

1.1 Emulators of Quantum Materials

Ever since R. Feynman’s visionary proposal1, quantum simulators of many-body system have
gained enormous attention. By exploiting the topological nature of emergent Majorana fermions
and utilizing charging e�ects, it is possible to construct arrays of mesoscopic quantum devices2–4

that realize unconventional strongly correlated and topologically ordered quantum phases5,6. These
phases are not only interesting for mere academical reasons but are also candidates for realizing,
e.g., quantum spin liquids (QSL) which are notoriously di�cult to observe in nature7. Furthermore,
they may be employed to emulate fractionalized Fermi liquids (FL⇤) which are exotic candidates to
explain Fermi surface reconstruction 8,9 in cuprates10 and heavy fermion materials11. Topologically
ordered phases are equally interesting for fault tolerant quantum computing which is a major topic
in the development of quantum computers. This circumstance has a couple of reasons. First,
the groundstate is protected against local perturbation due to the topological order, making these
devices perfect contenders for stable quantum memory12. On the other hand, the appearance of
anyons in such phases opens a route toward topological quantum computing by exploiting their
braiding statistics to implement quantum gates and perform calculations13,14.

Figure 1 shows how closely related these topics are and which rich physics connects to them.
Quantum materials, especially topological superconductors (top S.C.), form the hardware for quan-
tum information devices like quantum computers. Quantum computers themselves rely on devel-
oping error correction codes for which lattice gauge theory is an important mathematical tool.
The mathematics used in these two topics, however, is very similar to the one appearing in the
description of QSLs and FL⇤s, which itself belong, among other things like unconventional super-
conductors, to the realm of quantum materials, where “the circle” closes.
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Figure 1: Sketch of the relations between di�erent fields of physics in the framework of this thesis
project. The red area encloses all topics directly or indirectly related to Quantum Materials. The
blue area does the same for Quantum Information Science.
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FIG. 1: a) Schematic of experimental setup. The greey
box denotes the MCPB with the one-dimensional

time-reversal invariant SC (black line) that hosts four
MZMs (yello and red dots). The whole device is couple

to a right and left lead (blue lines). b) Schematic
representation of Hamiltonian (26). The even  + and

odd  − superpositions of the lead electrons are coupled
to the MCPB (square). The angular momentum Ĵ of

the superconducting condensate (blue ellipse) acts as an
e↵ective impurity for the lead electrons. The spin of the
lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow

ellipses). Only when the orbital next to the lead
electrons is occupied do the electrons feel the impurity.

c) Schematic Renormalization Group flow diagram
based on the parameter g defined through the impurity
entropy for N c

g
= 1�2. d) Absolute value of the charge

conductance between the left and right wire in the limit
Es�Ez >> 1.

structure of these phases is by now theoretically well un-
derstood, the additional complexity of strong electronic
correlations leads to much richer physics[7, 8] and is the
object of ongoing research. This particularly concerns
the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order param-
eter.

As a prime example, strong quantum fluctuations of
the superconducting phase in mesoscopic spinless Majo-
rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
recently in the prospect of quantum information [35–39],
and experimentally, in particular in mesoscopic quantum
electronics devices [40–42]. For this symmetry group,
non-Fermi liquid behavior occurs only in the overscreened
multichannel case [43]. The Majorana based topological
Kondo e↵ect is special, inasmuch it realizes an impu-
rity spin transforming under O(M) (where M denotes
the number of Majorana zero modes coupled to exter-
nal leads). Very recently, Majorana-free setups of or-
thogonal [44, 45] and symplectic symmetry [46, 47] were
proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, both orthogonal and
symplectic Kondo models display exotic physics, includ-
ing fingerprints of bound anyons, in the single channel
case, already [48].

Within the superconducting Altland Zirnbauer classes,
there are two non-trivial topological phases in one dimen-
sion. Apart from spinless p-wave superconductors (e.g.,
the“Kitaev chain” [10], class D), there is a spinful p-wave
time reversal invariant topological superconductor (TRI-
TOPS [49], class DIII). In this work, we study TRITOPS
islands in the Coulomb blockade regime and uncover an
unconventional topological Kondo e↵ect of spinful Ma-
jorana fermions. Using Abelian Bosonization, we solve
this problem in the simplest and most relevant case of
two pairs of Majorana edge states coupled to two spin-
ful leads, Fig. 1. We characterize the phase diagram and
demonstrate that the topological Kondo e↵ect of spinful
Majorana fermions is protected by spin-rotation symme-
try, but flows to the fixed point of the spinless topological
Kondo e↵ect in the presence of symmetry breaking per-
turbations. Both fixed points display exotic hallmarks
of non-Fermi liquids. We make numerically and (poten-
tially) experimentally verifiable predictions for thermo-
dynamic and transport signatures of the non-trivial low-
energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [50–53],
in particular regarding its unconventional transport
through Josephson junctions [54–60]. Strong order pa-
rameter fluctuations of the superconducting phase, i.e.
spinful MCPBs in the Coulomb blockade regime, also
gained some attention [51, 57], both in their context as
topological qubits[61], topological Josephson junction ar-
rays [62], and mesoscopic Kondo impurities [63]. At the
same time, to the best of our knowledge, the impact of
strong order parameter fluctuations of the Cooper pair
orientation d̂ in the spin sector was considered only in
Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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1.1 Emulators of Quantum Materials

Ever since R. Feynman’s visionary proposal1, quantum simulators of many-body system have
gained enormous attention. By exploiting the topological nature of emergent Majorana fermions
and utilizing charging e�ects, it is possible to construct arrays of mesoscopic quantum devices2–4

that realize unconventional strongly correlated and topologically ordered quantum phases5,6. These
phases are not only interesting for mere academical reasons but are also candidates for realizing,
e.g., quantum spin liquids (QSL) which are notoriously di�cult to observe in nature7. Furthermore,
they may be employed to emulate fractionalized Fermi liquids (FL⇤) which are exotic candidates to
explain Fermi surface reconstruction 8,9 in cuprates10 and heavy fermion materials11. Topologically
ordered phases are equally interesting for fault tolerant quantum computing which is a major topic
in the development of quantum computers. This circumstance has a couple of reasons. First,
the groundstate is protected against local perturbation due to the topological order, making these
devices perfect contenders for stable quantum memory12. On the other hand, the appearance of
anyons in such phases opens a route toward topological quantum computing by exploiting their
braiding statistics to implement quantum gates and perform calculations13,14.

Figure 1 shows how closely related these topics are and which rich physics connects to them.
Quantum materials, especially topological superconductors (top S.C.), form the hardware for quan-
tum information devices like quantum computers. Quantum computers themselves rely on devel-
oping error correction codes for which lattice gauge theory is an important mathematical tool.
The mathematics used in these two topics, however, is very similar to the one appearing in the
description of QSLs and FL⇤s, which itself belong, among other things like unconventional super-
conductors, to the realm of quantum materials, where “the circle” closes.
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We develop a quantum spin-liquid theory for quantum magnets with easy-plane ferromagnetic exchange.
These strongly entangled quantum states are obtained by dimer coverings of two-dimensional (2D) lattices with
triplet S = 1, mz = 0 bonds, forming a triplet resonating valence bond (tRVB) state. We discuss the conditions
and the procedure to transfer well-known results from conventional singlet resonating valence bond theory to
tRVB. Additionally, we present mean field theories of Abrikosov fermions on 2D triangular and square lattices,
which can be controlled in an appropriate large-N limit. We also incorporate the effect of charge doping which
stabilizes (p + ip)-wave superconductivity. Beyond the pure theoretical interest, our study may help to resolve
contradictory statements on certain transition metal chalcogenides, including 1T -TaS2, 1T -TaSe2, as well as
CrSiTe3 and CrGeTe3.

DOI: 10.1103/PhysRevB.105.075142

I. INTRODUCTION

A. Resonating valence bond theory

Resonating valence bond (RVB) theory describes prototyp-
ical quantum spin-liquid (QSL) states which were originally
proposed by Anderson [1,2] for the two-dimensional (2D)
Heisenberg antiferromagnet on a triangular lattice. The frus-
trated magnetic interactions entangle spins on different sites
of the lattice in a pairwise fashion into singlet valence bonds.
When the system resonates between a multitude of degen-
erate bond configurations, the RVB state forms a quantum
superposition of a macroscopic number of wave functions.
RVB states with short-range bonds on two-dimensional lat-
tices do not break any of the system’s symmetries and satisfy
modern criteria [3,4] for a quantum spin liquid (QSL) as a
highly entangled state with topological order [5]. While it
is now known that the ground state of the nearest-neighbor
Heisenberg antiferromagnet on the triangular lattice is not
a QSL state, numerical studies suggest that QSL behavior
can be stabilized by next-nearest-neighbor interactions [6–8].
Short-range RVB states are furthermore known to be the exact
ground state of dimer models [9] and even of appropriately
designed SU(2)-invariant spin Hamiltonians [10] with n-spin
interactions (including n > 2).

In addition to its progenitorial role in the study of QSLs,
RVB theory is also quintessential for superconductivity be-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

yond the BCS paradigm. Specifically in the context of cuprate
superconductors, preentangled singlet bonds are believed to
constitute a pair condensate which turns into a bona fide super-
conductor as doping liberates the charge degrees of freedom
from a correlated Mott insulator [11]. As a major advantage
over other approaches, RVB theory [12,13] and related gauge
theories [14,15] naturally account for pseudogap phenomena
[16] in an elegant and economical fashion.

FIG. 1. (a) Illustration of a dimer covering of the triangular lat-
tice with nearest-neighbor triplet bonds (see inset for definition of a
dimer). The tRVB ground state is a superposition of such coverings
and a triplet quantum spin liquid (QSL). (b) Energy levels of a pair
of spins with anisotropic interaction as in Eq. (6), illustrating that the
triplet valence bond (tVB) is lowest in energy. (c) Finite-temperature
mean field phase diagram for the model introduced in Eq. (10) as a
function of temperature and hole doping δ. A p + ip superconductor
(SC) appears by doping the QSL. For this plot, we used |EtVB|/t =
0.1.
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FIG. 1: a) Schematic of experimental setup. The greey
box denotes the MCPB with the one-dimensional

time-reversal invariant SC (black line) that hosts four
MZMs (yello and red dots). The whole device is couple

to a right and left lead (blue lines). b) Schematic
representation of Hamiltonian (26). The even  + and

odd  − superpositions of the lead electrons are coupled
to the MCPB (square). The angular momentum Ĵ of

the superconducting condensate (blue ellipse) acts as an
e↵ective impurity for the lead electrons. The spin of the
lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow

ellipses). Only when the orbital next to the lead
electrons is occupied do the electrons feel the impurity.

c) Schematic Renormalization Group flow diagram
based on the parameter g defined through the impurity
entropy for N c

g
= 1�2. d) Absolute value of the charge

conductance between the left and right wire in the limit
Es�Ez >> 1.

structure of these phases is by now theoretically well un-
derstood, the additional complexity of strong electronic
correlations leads to much richer physics[7, 8] and is the
object of ongoing research. This particularly concerns
the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order param-
eter.

As a prime example, strong quantum fluctuations of
the superconducting phase in mesoscopic spinless Majo-
rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
recently in the prospect of quantum information [35–39],
and experimentally, in particular in mesoscopic quantum
electronics devices [40–42]. For this symmetry group,
non-Fermi liquid behavior occurs only in the overscreened
multichannel case [43]. The Majorana based topological
Kondo e↵ect is special, inasmuch it realizes an impu-
rity spin transforming under O(M) (where M denotes
the number of Majorana zero modes coupled to exter-
nal leads). Very recently, Majorana-free setups of or-
thogonal [44, 45] and symplectic symmetry [46, 47] were
proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, both orthogonal and
symplectic Kondo models display exotic physics, includ-
ing fingerprints of bound anyons, in the single channel
case, already [48].

Within the superconducting Altland Zirnbauer classes,
there are two non-trivial topological phases in one dimen-
sion. Apart from spinless p-wave superconductors (e.g.,
the“Kitaev chain” [10], class D), there is a spinful p-wave
time reversal invariant topological superconductor (TRI-
TOPS [49], class DIII). In this work, we study TRITOPS
islands in the Coulomb blockade regime and uncover an
unconventional topological Kondo e↵ect of spinful Ma-
jorana fermions. Using Abelian Bosonization, we solve
this problem in the simplest and most relevant case of
two pairs of Majorana edge states coupled to two spin-
ful leads, Fig. 1. We characterize the phase diagram and
demonstrate that the topological Kondo e↵ect of spinful
Majorana fermions is protected by spin-rotation symme-
try, but flows to the fixed point of the spinless topological
Kondo e↵ect in the presence of symmetry breaking per-
turbations. Both fixed points display exotic hallmarks
of non-Fermi liquids. We make numerically and (poten-
tially) experimentally verifiable predictions for thermo-
dynamic and transport signatures of the non-trivial low-
energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [50–53],
in particular regarding its unconventional transport
through Josephson junctions [54–60]. Strong order pa-
rameter fluctuations of the superconducting phase, i.e.
spinful MCPBs in the Coulomb blockade regime, also
gained some attention [51, 57], both in their context as
topological qubits[61], topological Josephson junction ar-
rays [62], and mesoscopic Kondo impurities [63]. At the
same time, to the best of our knowledge, the impact of
strong order parameter fluctuations of the Cooper pair
orientation d̂ in the spin sector was considered only in
Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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1 Introduction

1.1 Emulators of Quantum Materials

Ever since R. Feynman’s visionary proposal1, quantum simulators of many-body system have
gained enormous attention. By exploiting the topological nature of emergent Majorana fermions
and utilizing charging e�ects, it is possible to construct arrays of mesoscopic quantum devices2–4

that realize unconventional strongly correlated and topologically ordered quantum phases5,6. These
phases are not only interesting for mere academical reasons but are also candidates for realizing,
e.g., quantum spin liquids (QSL) which are notoriously di�cult to observe in nature7. Furthermore,
they may be employed to emulate fractionalized Fermi liquids (FL⇤) which are exotic candidates to
explain Fermi surface reconstruction 8,9 in cuprates10 and heavy fermion materials11. Topologically
ordered phases are equally interesting for fault tolerant quantum computing which is a major topic
in the development of quantum computers. This circumstance has a couple of reasons. First,
the groundstate is protected against local perturbation due to the topological order, making these
devices perfect contenders for stable quantum memory12. On the other hand, the appearance of
anyons in such phases opens a route toward topological quantum computing by exploiting their
braiding statistics to implement quantum gates and perform calculations13,14.

Figure 1 shows how closely related these topics are and which rich physics connects to them.
Quantum materials, especially topological superconductors (top S.C.), form the hardware for quan-
tum information devices like quantum computers. Quantum computers themselves rely on devel-
oping error correction codes for which lattice gauge theory is an important mathematical tool.
The mathematics used in these two topics, however, is very similar to the one appearing in the
description of QSLs and FL⇤s, which itself belong, among other things like unconventional super-
conductors, to the realm of quantum materials, where “the circle” closes.
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Figure 1: Sketch of the relations between di�erent fields of physics in the framework of this thesis
project. The red area encloses all topics directly or indirectly related to Quantum Materials. The
blue area does the same for Quantum Information Science.
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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Triplet resonating valence bond theory and transition metal chalcogenides
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We develop a quantum spin-liquid theory for quantum magnets with easy-plane ferromagnetic exchange.
These strongly entangled quantum states are obtained by dimer coverings of two-dimensional (2D) lattices with
triplet S = 1, mz = 0 bonds, forming a triplet resonating valence bond (tRVB) state. We discuss the conditions
and the procedure to transfer well-known results from conventional singlet resonating valence bond theory to
tRVB. Additionally, we present mean field theories of Abrikosov fermions on 2D triangular and square lattices,
which can be controlled in an appropriate large-N limit. We also incorporate the effect of charge doping which
stabilizes (p + ip)-wave superconductivity. Beyond the pure theoretical interest, our study may help to resolve
contradictory statements on certain transition metal chalcogenides, including 1T -TaS2, 1T -TaSe2, as well as
CrSiTe3 and CrGeTe3.

DOI: 10.1103/PhysRevB.105.075142

I. INTRODUCTION

A. Resonating valence bond theory

Resonating valence bond (RVB) theory describes prototyp-
ical quantum spin-liquid (QSL) states which were originally
proposed by Anderson [1,2] for the two-dimensional (2D)
Heisenberg antiferromagnet on a triangular lattice. The frus-
trated magnetic interactions entangle spins on different sites
of the lattice in a pairwise fashion into singlet valence bonds.
When the system resonates between a multitude of degen-
erate bond configurations, the RVB state forms a quantum
superposition of a macroscopic number of wave functions.
RVB states with short-range bonds on two-dimensional lat-
tices do not break any of the system’s symmetries and satisfy
modern criteria [3,4] for a quantum spin liquid (QSL) as a
highly entangled state with topological order [5]. While it
is now known that the ground state of the nearest-neighbor
Heisenberg antiferromagnet on the triangular lattice is not
a QSL state, numerical studies suggest that QSL behavior
can be stabilized by next-nearest-neighbor interactions [6–8].
Short-range RVB states are furthermore known to be the exact
ground state of dimer models [9] and even of appropriately
designed SU(2)-invariant spin Hamiltonians [10] with n-spin
interactions (including n > 2).

In addition to its progenitorial role in the study of QSLs,
RVB theory is also quintessential for superconductivity be-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

yond the BCS paradigm. Specifically in the context of cuprate
superconductors, preentangled singlet bonds are believed to
constitute a pair condensate which turns into a bona fide super-
conductor as doping liberates the charge degrees of freedom
from a correlated Mott insulator [11]. As a major advantage
over other approaches, RVB theory [12,13] and related gauge
theories [14,15] naturally account for pseudogap phenomena
[16] in an elegant and economical fashion.

FIG. 1. (a) Illustration of a dimer covering of the triangular lat-
tice with nearest-neighbor triplet bonds (see inset for definition of a
dimer). The tRVB ground state is a superposition of such coverings
and a triplet quantum spin liquid (QSL). (b) Energy levels of a pair
of spins with anisotropic interaction as in Eq. (6), illustrating that the
triplet valence bond (tVB) is lowest in energy. (c) Finite-temperature
mean field phase diagram for the model introduced in Eq. (10) as a
function of temperature and hole doping δ. A p + ip superconductor
(SC) appears by doping the QSL. For this plot, we used |EtVB|/t =
0.1.
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FIG. 1: a) Schematic of experimental setup. The greey
box denotes the MCPB with the one-dimensional

time-reversal invariant SC (black line) that hosts four
MZMs (yello and red dots). The whole device is couple

to a right and left lead (blue lines). b) Schematic
representation of Hamiltonian (26). The even  + and

odd  − superpositions of the lead electrons are coupled
to the MCPB (square). The angular momentum Ĵ of

the superconducting condensate (blue ellipse) acts as an
e↵ective impurity for the lead electrons. The spin of the
lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow

ellipses). Only when the orbital next to the lead
electrons is occupied do the electrons feel the impurity.

c) Schematic Renormalization Group flow diagram
based on the parameter g defined through the impurity
entropy for N c

g
= 1�2. d) Absolute value of the charge

conductance between the left and right wire in the limit
Es�Ez >> 1.

structure of these phases is by now theoretically well un-
derstood, the additional complexity of strong electronic
correlations leads to much richer physics[7, 8] and is the
object of ongoing research. This particularly concerns
the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order param-
eter.

As a prime example, strong quantum fluctuations of
the superconducting phase in mesoscopic spinless Majo-
rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
recently in the prospect of quantum information [35–39],
and experimentally, in particular in mesoscopic quantum
electronics devices [40–42]. For this symmetry group,
non-Fermi liquid behavior occurs only in the overscreened
multichannel case [43]. The Majorana based topological
Kondo e↵ect is special, inasmuch it realizes an impu-
rity spin transforming under O(M) (where M denotes
the number of Majorana zero modes coupled to exter-
nal leads). Very recently, Majorana-free setups of or-
thogonal [44, 45] and symplectic symmetry [46, 47] were
proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, both orthogonal and
symplectic Kondo models display exotic physics, includ-
ing fingerprints of bound anyons, in the single channel
case, already [48].

Within the superconducting Altland Zirnbauer classes,
there are two non-trivial topological phases in one dimen-
sion. Apart from spinless p-wave superconductors (e.g.,
the“Kitaev chain” [10], class D), there is a spinful p-wave
time reversal invariant topological superconductor (TRI-
TOPS [49], class DIII). In this work, we study TRITOPS
islands in the Coulomb blockade regime and uncover an
unconventional topological Kondo e↵ect of spinful Ma-
jorana fermions. Using Abelian Bosonization, we solve
this problem in the simplest and most relevant case of
two pairs of Majorana edge states coupled to two spin-
ful leads, Fig. 1. We characterize the phase diagram and
demonstrate that the topological Kondo e↵ect of spinful
Majorana fermions is protected by spin-rotation symme-
try, but flows to the fixed point of the spinless topological
Kondo e↵ect in the presence of symmetry breaking per-
turbations. Both fixed points display exotic hallmarks
of non-Fermi liquids. We make numerically and (poten-
tially) experimentally verifiable predictions for thermo-
dynamic and transport signatures of the non-trivial low-
energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [50–53],
in particular regarding its unconventional transport
through Josephson junctions [54–60]. Strong order pa-
rameter fluctuations of the superconducting phase, i.e.
spinful MCPBs in the Coulomb blockade regime, also
gained some attention [51, 57], both in their context as
topological qubits[61], topological Josephson junction ar-
rays [62], and mesoscopic Kondo impurities [63]. At the
same time, to the best of our knowledge, the impact of
strong order parameter fluctuations of the Cooper pair
orientation d̂ in the spin sector was considered only in
Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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1 Introduction

1.1 Emulators of Quantum Materials

Ever since R. Feynman’s visionary proposal1, quantum simulators of many-body system have
gained enormous attention. By exploiting the topological nature of emergent Majorana fermions
and utilizing charging e�ects, it is possible to construct arrays of mesoscopic quantum devices2–4

that realize unconventional strongly correlated and topologically ordered quantum phases5,6. These
phases are not only interesting for mere academical reasons but are also candidates for realizing,
e.g., quantum spin liquids (QSL) which are notoriously di�cult to observe in nature7. Furthermore,
they may be employed to emulate fractionalized Fermi liquids (FL⇤) which are exotic candidates to
explain Fermi surface reconstruction 8,9 in cuprates10 and heavy fermion materials11. Topologically
ordered phases are equally interesting for fault tolerant quantum computing which is a major topic
in the development of quantum computers. This circumstance has a couple of reasons. First,
the groundstate is protected against local perturbation due to the topological order, making these
devices perfect contenders for stable quantum memory12. On the other hand, the appearance of
anyons in such phases opens a route toward topological quantum computing by exploiting their
braiding statistics to implement quantum gates and perform calculations13,14.

Figure 1 shows how closely related these topics are and which rich physics connects to them.
Quantum materials, especially topological superconductors (top S.C.), form the hardware for quan-
tum information devices like quantum computers. Quantum computers themselves rely on devel-
oping error correction codes for which lattice gauge theory is an important mathematical tool.
The mathematics used in these two topics, however, is very similar to the one appearing in the
description of QSLs and FL⇤s, which itself belong, among other things like unconventional super-
conductors, to the realm of quantum materials, where “the circle” closes.
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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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We develop a quantum spin-liquid theory for quantum magnets with easy-plane ferromagnetic exchange.
These strongly entangled quantum states are obtained by dimer coverings of two-dimensional (2D) lattices with
triplet S = 1, mz = 0 bonds, forming a triplet resonating valence bond (tRVB) state. We discuss the conditions
and the procedure to transfer well-known results from conventional singlet resonating valence bond theory to
tRVB. Additionally, we present mean field theories of Abrikosov fermions on 2D triangular and square lattices,
which can be controlled in an appropriate large-N limit. We also incorporate the effect of charge doping which
stabilizes (p + ip)-wave superconductivity. Beyond the pure theoretical interest, our study may help to resolve
contradictory statements on certain transition metal chalcogenides, including 1T -TaS2, 1T -TaSe2, as well as
CrSiTe3 and CrGeTe3.
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I. INTRODUCTION

A. Resonating valence bond theory

Resonating valence bond (RVB) theory describes prototyp-
ical quantum spin-liquid (QSL) states which were originally
proposed by Anderson [1,2] for the two-dimensional (2D)
Heisenberg antiferromagnet on a triangular lattice. The frus-
trated magnetic interactions entangle spins on different sites
of the lattice in a pairwise fashion into singlet valence bonds.
When the system resonates between a multitude of degen-
erate bond configurations, the RVB state forms a quantum
superposition of a macroscopic number of wave functions.
RVB states with short-range bonds on two-dimensional lat-
tices do not break any of the system’s symmetries and satisfy
modern criteria [3,4] for a quantum spin liquid (QSL) as a
highly entangled state with topological order [5]. While it
is now known that the ground state of the nearest-neighbor
Heisenberg antiferromagnet on the triangular lattice is not
a QSL state, numerical studies suggest that QSL behavior
can be stabilized by next-nearest-neighbor interactions [6–8].
Short-range RVB states are furthermore known to be the exact
ground state of dimer models [9] and even of appropriately
designed SU(2)-invariant spin Hamiltonians [10] with n-spin
interactions (including n > 2).

In addition to its progenitorial role in the study of QSLs,
RVB theory is also quintessential for superconductivity be-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

yond the BCS paradigm. Specifically in the context of cuprate
superconductors, preentangled singlet bonds are believed to
constitute a pair condensate which turns into a bona fide super-
conductor as doping liberates the charge degrees of freedom
from a correlated Mott insulator [11]. As a major advantage
over other approaches, RVB theory [12,13] and related gauge
theories [14,15] naturally account for pseudogap phenomena
[16] in an elegant and economical fashion.

FIG. 1. (a) Illustration of a dimer covering of the triangular lat-
tice with nearest-neighbor triplet bonds (see inset for definition of a
dimer). The tRVB ground state is a superposition of such coverings
and a triplet quantum spin liquid (QSL). (b) Energy levels of a pair
of spins with anisotropic interaction as in Eq. (6), illustrating that the
triplet valence bond (tVB) is lowest in energy. (c) Finite-temperature
mean field phase diagram for the model introduced in Eq. (10) as a
function of temperature and hole doping δ. A p + ip superconductor
(SC) appears by doping the QSL. For this plot, we used |EtVB|/t =
0.1.
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FIG. 1: a) Schematic of experimental setup. The greey
box denotes the MCPB with the one-dimensional

time-reversal invariant SC (black line) that hosts four
MZMs (yello and red dots). The whole device is couple

to a right and left lead (blue lines). b) Schematic
representation of Hamiltonian (26). The even  + and

odd  − superpositions of the lead electrons are coupled
to the MCPB (square). The angular momentum Ĵ of

the superconducting condensate (blue ellipse) acts as an
e↵ective impurity for the lead electrons. The spin of the
lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow

ellipses). Only when the orbital next to the lead
electrons is occupied do the electrons feel the impurity.

c) Schematic Renormalization Group flow diagram
based on the parameter g defined through the impurity
entropy for N c

g
= 1�2. d) Absolute value of the charge

conductance between the left and right wire in the limit
Es�Ez >> 1.

structure of these phases is by now theoretically well un-
derstood, the additional complexity of strong electronic
correlations leads to much richer physics[7, 8] and is the
object of ongoing research. This particularly concerns
the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order param-
eter.

As a prime example, strong quantum fluctuations of
the superconducting phase in mesoscopic spinless Majo-
rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
recently in the prospect of quantum information [35–39],
and experimentally, in particular in mesoscopic quantum
electronics devices [40–42]. For this symmetry group,
non-Fermi liquid behavior occurs only in the overscreened
multichannel case [43]. The Majorana based topological
Kondo e↵ect is special, inasmuch it realizes an impu-
rity spin transforming under O(M) (where M denotes
the number of Majorana zero modes coupled to exter-
nal leads). Very recently, Majorana-free setups of or-
thogonal [44, 45] and symplectic symmetry [46, 47] were
proposed, mathematically completing the set of possible
classical Lie groups. Interestingly, both orthogonal and
symplectic Kondo models display exotic physics, includ-
ing fingerprints of bound anyons, in the single channel
case, already [48].

Within the superconducting Altland Zirnbauer classes,
there are two non-trivial topological phases in one dimen-
sion. Apart from spinless p-wave superconductors (e.g.,
the“Kitaev chain” [10], class D), there is a spinful p-wave
time reversal invariant topological superconductor (TRI-
TOPS [49], class DIII). In this work, we study TRITOPS
islands in the Coulomb blockade regime and uncover an
unconventional topological Kondo e↵ect of spinful Ma-
jorana fermions. Using Abelian Bosonization, we solve
this problem in the simplest and most relevant case of
two pairs of Majorana edge states coupled to two spin-
ful leads, Fig. 1. We characterize the phase diagram and
demonstrate that the topological Kondo e↵ect of spinful
Majorana fermions is protected by spin-rotation symme-
try, but flows to the fixed point of the spinless topological
Kondo e↵ect in the presence of symmetry breaking per-
turbations. Both fixed points display exotic hallmarks
of non-Fermi liquids. We make numerically and (poten-
tially) experimentally verifiable predictions for thermo-
dynamic and transport signatures of the non-trivial low-
energy fixed point.

Single-particle physics in one-dimensional TRITOPS
gained substantial attention over the years [50–53],
in particular regarding its unconventional transport
through Josephson junctions [54–60]. Strong order pa-
rameter fluctuations of the superconducting phase, i.e.
spinful MCPBs in the Coulomb blockade regime, also
gained some attention [51, 57], both in their context as
topological qubits[61], topological Josephson junction ar-
rays [62], and mesoscopic Kondo impurities [63]. At the
same time, to the best of our knowledge, the impact of
strong order parameter fluctuations of the Cooper pair
orientation d̂ in the spin sector was considered only in
Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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1 Introduction

1.1 Emulators of Quantum Materials

Ever since R. Feynman’s visionary proposal1, quantum simulators of many-body system have
gained enormous attention. By exploiting the topological nature of emergent Majorana fermions
and utilizing charging e�ects, it is possible to construct arrays of mesoscopic quantum devices2–4

that realize unconventional strongly correlated and topologically ordered quantum phases5,6. These
phases are not only interesting for mere academical reasons but are also candidates for realizing,
e.g., quantum spin liquids (QSL) which are notoriously di�cult to observe in nature7. Furthermore,
they may be employed to emulate fractionalized Fermi liquids (FL⇤) which are exotic candidates to
explain Fermi surface reconstruction 8,9 in cuprates10 and heavy fermion materials11. Topologically
ordered phases are equally interesting for fault tolerant quantum computing which is a major topic
in the development of quantum computers. This circumstance has a couple of reasons. First,
the groundstate is protected against local perturbation due to the topological order, making these
devices perfect contenders for stable quantum memory12. On the other hand, the appearance of
anyons in such phases opens a route toward topological quantum computing by exploiting their
braiding statistics to implement quantum gates and perform calculations13,14.

Figure 1 shows how closely related these topics are and which rich physics connects to them.
Quantum materials, especially topological superconductors (top S.C.), form the hardware for quan-
tum information devices like quantum computers. Quantum computers themselves rely on devel-
oping error correction codes for which lattice gauge theory is an important mathematical tool.
The mathematics used in these two topics, however, is very similar to the one appearing in the
description of QSLs and FL⇤s, which itself belong, among other things like unconventional super-
conductors, to the realm of quantum materials, where “the circle” closes.

Quantum
Materials

Quantum Information
Science

top. SCunconventional SC/
triplet SC

Fermi surface
reconstruction

& FL*

lattice gauge 
theory

topological 
error correction

codes

quantum spin 
liquids

emulators

Figure 1: Sketch of the relations between di�erent fields of physics in the framework of this thesis
project. The red area encloses all topics directly or indirectly related to Quantum Materials. The
blue area does the same for Quantum Information Science.
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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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We develop a quantum spin-liquid theory for quantum magnets with easy-plane ferromagnetic exchange.
These strongly entangled quantum states are obtained by dimer coverings of two-dimensional (2D) lattices with
triplet S = 1, mz = 0 bonds, forming a triplet resonating valence bond (tRVB) state. We discuss the conditions
and the procedure to transfer well-known results from conventional singlet resonating valence bond theory to
tRVB. Additionally, we present mean field theories of Abrikosov fermions on 2D triangular and square lattices,
which can be controlled in an appropriate large-N limit. We also incorporate the effect of charge doping which
stabilizes (p + ip)-wave superconductivity. Beyond the pure theoretical interest, our study may help to resolve
contradictory statements on certain transition metal chalcogenides, including 1T -TaS2, 1T -TaSe2, as well as
CrSiTe3 and CrGeTe3.

DOI: 10.1103/PhysRevB.105.075142

I. INTRODUCTION

A. Resonating valence bond theory

Resonating valence bond (RVB) theory describes prototyp-
ical quantum spin-liquid (QSL) states which were originally
proposed by Anderson [1,2] for the two-dimensional (2D)
Heisenberg antiferromagnet on a triangular lattice. The frus-
trated magnetic interactions entangle spins on different sites
of the lattice in a pairwise fashion into singlet valence bonds.
When the system resonates between a multitude of degen-
erate bond configurations, the RVB state forms a quantum
superposition of a macroscopic number of wave functions.
RVB states with short-range bonds on two-dimensional lat-
tices do not break any of the system’s symmetries and satisfy
modern criteria [3,4] for a quantum spin liquid (QSL) as a
highly entangled state with topological order [5]. While it
is now known that the ground state of the nearest-neighbor
Heisenberg antiferromagnet on the triangular lattice is not
a QSL state, numerical studies suggest that QSL behavior
can be stabilized by next-nearest-neighbor interactions [6–8].
Short-range RVB states are furthermore known to be the exact
ground state of dimer models [9] and even of appropriately
designed SU(2)-invariant spin Hamiltonians [10] with n-spin
interactions (including n > 2).

In addition to its progenitorial role in the study of QSLs,
RVB theory is also quintessential for superconductivity be-
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and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

yond the BCS paradigm. Specifically in the context of cuprate
superconductors, preentangled singlet bonds are believed to
constitute a pair condensate which turns into a bona fide super-
conductor as doping liberates the charge degrees of freedom
from a correlated Mott insulator [11]. As a major advantage
over other approaches, RVB theory [12,13] and related gauge
theories [14,15] naturally account for pseudogap phenomena
[16] in an elegant and economical fashion.

FIG. 1. (a) Illustration of a dimer covering of the triangular lat-
tice with nearest-neighbor triplet bonds (see inset for definition of a
dimer). The tRVB ground state is a superposition of such coverings
and a triplet quantum spin liquid (QSL). (b) Energy levels of a pair
of spins with anisotropic interaction as in Eq. (6), illustrating that the
triplet valence bond (tVB) is lowest in energy. (c) Finite-temperature
mean field phase diagram for the model introduced in Eq. (10) as a
function of temperature and hole doping δ. A p + ip superconductor
(SC) appears by doping the QSL. For this plot, we used |EtVB|/t =
0.1.
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FIG. 1: a) Schematic of experimental setup. The greey
box denotes the MCPB with the one-dimensional

time-reversal invariant SC (black line) that hosts four
MZMs (yello and red dots). The whole device is couple

to a right and left lead (blue lines). b) Schematic
representation of Hamiltonian (26). The even  + and

odd  − superpositions of the lead electrons are coupled
to the MCPB (square). The angular momentum Ĵ of

the superconducting condensate (blue ellipse) acts as an
e↵ective impurity for the lead electrons. The spin of the
lead electrons (black arrows) is coupled to the impurity
via the orbitals formed by the MZMs (red and yellow

ellipses). Only when the orbital next to the lead
electrons is occupied do the electrons feel the impurity.

c) Schematic Renormalization Group flow diagram
based on the parameter g defined through the impurity
entropy for N c

g
= 1�2. d) Absolute value of the charge

conductance between the left and right wire in the limit
Es�Ez >> 1.

structure of these phases is by now theoretically well un-
derstood, the additional complexity of strong electronic
correlations leads to much richer physics[7, 8] and is the
object of ongoing research. This particularly concerns
the interplay of fermionic boundary states (Majorana
fermions) with quantum fluctuations of the order param-
eter.

As a prime example, strong quantum fluctuations of
the superconducting phase in mesoscopic spinless Majo-
rana Cooper-pair boxes (MCPB) can be induced by a
large charging energy[9]. These devices are floating is-
lands of Josephson-connected spinless p-wave supercon-
ducting chains[10, 11] and allow to implement a paradig-
matic topological qbit, the tetron [12]. While arrays
of such tetrons emulate exotic fractionalized many-body
phases with topological order[12–16], a single spinless

MCPB coupled to metallic leads realizes a topological
quantum impurity problem, the topological Kondo ef-
fect [17–23], hosting non-Fermi liquid like ground state
characteristics and an irrational residual entropy remi-
niscent of a non-trivial anyonic quantum dimension.

Exotic Kondo impurity problems of SU(N) symmetry,
most notably for N = 2, have been studied extensively
for the past forty years both theoretically [24–34], most
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same time, to the best of our knowledge, the impact of
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Ref. [64], where it was uncovered that the bandstructure
topology induces a theta term[65] in the e↵ective non-
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
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anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
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is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ
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particle (hole) in electrode 1 (electrode 2) by A1†2
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spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.

PHYSICAL REVIEW LETTERS 125, 267206 (2020)

0031-9007=20=125(26)=267206(6) 267206-1 © 2020 American Physical Society

Tunneling current

 

Tunneling Spectroscopy of Quantum Spin Liquids

Elio J. König,1 Mallika T. Randeria,2 and Berthold Jäck3
1Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Princeton University, Joseph Henry Laboratory at the Department of Physics, Princeton, New Jersey 08544, USA

(Received 21 August 2020; accepted 4 December 2020; published 31 December 2020)

We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
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In the specific case of the Kitaev spin liquid, where
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spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
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Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
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FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h
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x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X
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h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel
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¼−G0

X
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JxJx0
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Z
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dE
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ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
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In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
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[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
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spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
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respectively, at V ≠ 0.
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inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X
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dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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importantly, by the spectral weight of the spin excitations
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inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
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We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
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We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ
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Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel
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¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.

PHYSICAL REVIEW LETTERS 125, 267206 (2020)

267206-3

Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where
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In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]
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h
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spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
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decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
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Fermi wavelength, the inelastic contribution to the differ-
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can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
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barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
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unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
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correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
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filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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of the tunnel junction geometry, and it can be evaluated on
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FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
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Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
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respectively, at V ≠ 0.
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h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.

PHYSICAL REVIEW LETTERS 125, 267206 (2020)

267206-3

 

Tunneling Spectroscopy of Quantum Spin Liquids

Elio J. König,1 Mallika T. Randeria,2 and Berthold Jäck3
1Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Princeton University, Joseph Henry Laboratory at the Department of Physics, Princeton, New Jersey 08544, USA

(Received 21 August 2020; accepted 4 December 2020; published 31 December 2020)

We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.

PHYSICAL REVIEW LETTERS 125, 267206 (2020)

0031-9007=20=125(26)=267206(6) 267206-1 © 2020 American Physical Society

 

Tunneling Spectroscopy of Quantum Spin Liquids

Elio J. König,1 Mallika T. Randeria,2 and Berthold Jäck3
1Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Princeton University, Joseph Henry Laboratory at the Department of Physics, Princeton, New Jersey 08544, USA

(Received 21 August 2020; accepted 4 December 2020; published 31 December 2020)

We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
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graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.

DOI: 10.1103/PhysRevLett.125.267206

Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
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modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
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decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current

Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
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We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]
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Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
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decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]
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Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
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Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0ðeVÞ − 1 ↔ 2&: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fA

spin
x;x0ðeV − EÞA1†2

x;x0ðEÞ

× ½nðeV − EÞ − nðEÞ& − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ&i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0
t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ& [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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Figure 1 | Iron deposition strongly modifies the topological surface. a, Uniformly electron-doped Bi2Se3 has a single surface-state Dirac cone. b, When the
surface chemical potential of as-grown Bi2Se3 is lowered to the Dirac point by NO2 deposition, we observe a slight gap in the leading edge of ARPES
intensity. c, The hexagonal surface Brillouin zone of Bi2Se3 is drawn above a diagram of the three-dimensional bulk Brillouin zone. d, A second-derivative
image of new surface states in Bi2Se3 (sample no 1) after surface iron deposition is labelled with numerically predicted spin texture from Fig. 3b.
e, Low-energy features from d have no z-axis momentum dispersion, as seen from the data taken with varying incident photon energy (37–29 eV),
confirming the two-dimensional character of the state.

not the bulk electronic band structure. Electron velocities (band
slope) near the D1 and D2 Dirac points increase monotonically
as iron is added, showing that iron is increasing the ‘Rashba’
interaction term ((k× ẑ) ·σ, with σ representing the Pauli matrices)
identified in theoretical models3. The number of surface bands
intersecting the Fermi level between the ! and M points progresses
from one to three to five, with one band contributed by the original
(D0)Dirac cone and twomore bands contributed by each of the new
(D1, D2) Dirac points. This is consistent with theMod(2) character
of surface electrons on a crystal with bulk topological insulator
order, that the topological surface likes to maintain an odd number
of Dirac states. After 12min of deposition, the binding energy of the
D0 Dirac point was found to have sunk by approximately 0.6 eV in
energy, and the electron binding energies ceased to change under
further deposition.When the chemical potential is positioned above
the bulk conduction-band minimum, as in sample no 2 (Fig. 2c),
the dispersion of new surface states across the full bulk bandgap
is visible within the photoemission image. A new, strongly split
surface band is observed in sample no 2 after five minutes of
Fe deposition with a (D1) Dirac point at the ! point, but no further
(for example, D2) bands appeared after longer deposition.

Theoretical simulation of non-magnetic surface Coulomb
perturbation on Bi2Se3 is shown in Fig. 3a, and qualitatively
reproduces the progressive appearance of new Dirac points
with increasing iron deposition. Through comparison with our
numerical result, we can see that the experimentally observed

surface states begin to pair off at momentum separation greater
than ∼0.1Å−1 from the Brillouin zone centre, with the upper
D0 Dirac cone approaching degeneracy with the lower D1 band,
and the upper D1 band connecting to the lower D2 band. The
partner-swapping connectivity observed in the simulation and data
is a simple way by which new states can be added to the surface
band structure without disrupting the surface conditions required
by the bulk topological insulator order of Bi2Se3 (ref. 3). The
spin-splitting of topological surface bands is often discussed as
a special case of the Rashba effect (see, for example, refs 3,20),
in which surface electronic states become spin-split by an energy
proportional to their momentum k. Our data and simulations
show that this description is only accurate for Bi2Se3 in a small
part of the Brillouin zone surrounding the Brillouin zone centre,
because at momenta further from the ! point the electronic states
pair off and are nearly spin degenerate (see Fig. 3b). This can be
understood because the origin of the topological insulator state in
Bi2Se3 is a symmetry inversion that occurs at the! point7,18, and the
electronic states close to the Brillouin-zone boundary are similar
to those of topologically trivial materials. The role of magnetic
domains in reshaping low-energy band structure is expected to
be more subtle than Coulomb perturbations, and may be limited
to changes near the Dirac points and in self-energy lineshape
effects (see Fig. 3c,d).

Recent theoretical studies suggest that the physical environment
of magnetic impurities on a topological surface is very different
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Figure 1

Phase diagram of hole-doped cuprates. a) In zero field, superconductivity exists in a dome below Tc (dashed line).
When it is removed by a magnetic field, various underlying ground states are revealed: 1) Doped Mott insulator with
antiferromagnetic order, on the far left (brown, AF); 2) Pseudogap (PG) phase below a temperature T

? (yellow, PG),
ending at a T = 0 critical point p

? (red dot); 3) Charge-density-wave phase (blue, CDW), contained inside the pseudogap
phase; 4) a strange metal just above p

? (white region), which gives way to a Fermi liquid at highest doping (grey region).
b) Phase diagram of Nd-LSCO, with the pseudogap temperature T

? measured by resistivity (circles) and ARPES (square;
panels c, d), ending at the critical point p

? (from ref. (4)). c) ARPES spectra showing the pseudogap in Nd-LSCO
measured just above Tc at four dopings, as indicated (5). The pseudogap is seen to close between p = 0.20 and p = 0.24,
consistent with p

? = 0.23. d) ARPES spectra at p = 0.20 vs temperature (5). The pseudogap is seen to close at
T

? = 75 K (square in panel b).

1. INTRODUCTION

After more than three decades, cuprates continue to fascinate physicists because of a per-

sistent sense – a growing conviction – that these materials host novel quantum phenomena.

And these arise from electron interactions that are most likely also responsible for the

exceptionally strong superconductivity.

The repulsive interaction between electrons in cuprates is so strong that when there is

one electron on every Cu site of their CuO2 planes, a Mott insulator forms in which no

motion is possible. By removing electrons, or adding p holes (per Cu site), electron motion

is restored, and at high enough p cuprates become well-behaved metals. The unusual

phenomena occur in the intermediate regime, between the Mott insulator at p = 0 and the

Fermi liquid at p > 0.3 (Fig. 1a).

This is where superconductivity lives, below a critical temperature Tc that forms a dome

(Fig. 1a), peaking at a value that can exceed 150 K – halfway to room temperature. In this

Article, we ask the following question: How does the underlying normal state – from which

superconductivity emerges – evolve with doping? In particular, we focus on the ground

state, as T ! 0, accessed by suppressing superconductivity with a large magnetic field.

At T = 0, in the absence of superconductivity, the key event on the path from Fermi

liquid to Mott insulator is the onset of the pseudogap phase, at a critical doping p
? (red

dot in Fig. 1). One of the most remarkable – and puzzling – phenomena in condensed-

matter physics, the pseudogap phase exists in all hole-doped cuprates below a temperature

T
? that decreases with doping to end at p? (Fig. 1). We will discuss what high-field studies

reveal about the ground state of cuprates, both inside (p < p
?) and outside (p > p

?) the

pseudogap phase. The latter region presents another major puzzle of condensed-matter
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be direction-independent (Supplementary Fig. 5). This magnetic 
field scale seems to represent a general energy scale for correlated 
uranium compounds: weak anomalies are observed in the ferro-
magnetic superconductor UCoGe (ref. 16), whereas a large magneti-
zation jump occurs in the hidden-order compound URu2Si2 (ref. 17).

As Hm limits the SCRE phase, it gives rise to an even more star-
tling form of superconductivity. Sweeping magnetic fields through 
the angular range of θ = 20–40° from the b axis towards the c axis 
reveals a superconducting phase inside the field-polarized state 
SCFP at high H (Fig. 3). The onset field of the SCFP phase precisely 
follows the angle dependence of Hm, while the upper critical field 
goes through a dome, with the maximum value exceeding 65 T, the 
maximum field possible in our measurements. This new supercon-
ducting phase largely exceeds the magnetic field range of all known 
field-induced superconductors3–5,10. Owing to its shared phase 
boundary with the magnetic transition, this superconducting phase 
tolerates a rather large angular range of offsets from the b–c rotation 
plane. However, it does not appear when the field is rotated from the 
b axis to the a axis.

Having established the field limits and angle dependence of the 
SCFP phase, we turn to its temperature stability (Fig. 4). The onset 
field has almost no temperature dependence, again following Hm, 
while the upper critical field of the SCFP phase disappears near 1.6 K, 
similar to the zero-field superconducting critical temperature. This 
suggests that although it is stabilized at a remarkably high field, the 
new superconducting phase involves a similar pairing energy scale 
to the zero-field superconductor.

The mechanism responsible for the large magnetic field and 
temperature stability of the SCFP phase is unclear. A natural candi-
date is the Jaccarino–Peter effect used to describe other re-entrant 

superconductors9. This antiferromagnetic type of exchange inter-
action can lead to an internal magnetic field that is opposite the 
external magnetic field, resulting in a much smaller total magnetic 
field. This compensation mechanism has successfully explained 
the field-induced superconductivity in Chevrel-phase compounds 
and organic superconductors3–5, but it probably does not apply to 
the SCFP phase of UTe2, which lacks the requisite localized atomic 
moments. Furthermore, SCFP persists over a wider field–angle range 
than is typical of the compensation effect18.

The temperature dependence of the SCFP phase and its close 
relationship with the magnetic transition are reminiscent of the 
field-induced superconducting phase in URhGe, which has been 
attributed to ferromagnetic spin fluctuations associated with the 
competition of spin alignment between two weakly anisotropic 
axes. In URhGe, a magnetic field transverse to the direction of the 
ordered magnetic moments leads to the collapse of the Ising fer-
romagnetism; this instability enhances ferromagnetic fluctuations, 
which in turn induce superconductivity7.

UTe2, however, is not ferromagnetic. Nevertheless, the simi-
larities between UTe2 and the ferromagnetic superconductors with 
regard to the relationship between the preferred magnetic axis and 
the direction of high Hc2 (ref. 6) suggest that strong spin fluctua-
tions transverse to the preferred orientation or easy axis of the mag-
netic moment play a central role in these superconducting phases7. 
The Hc2 values and directionality in UTe2 can thus be understood 
in the following manner. Starting from zero magnetic field, super-
conductivity is most resilient to a magnetic field applied along the 
b axis, which is perpendicular to the easy magnetic a axis. A mag-
netic field applied along the b axis thus induces spin fluctuations 
that stabilize superconductivity against field-induced pair breaking. 
At 34.5 T, however, a magnetic phase transition occurs, and mag-
netic moments rotate from the a axis to the b axis. In the high-field-
polarized phase, a magnetic field along the b axis no longer induces 
transverse spin fluctuations, and superconductivity is suppressed 
completely. However, it is possible to induce transverse spin fluctua-
tions by applying a magnetic field along the c axis. When viewed as 
a vector sum of fields along the b and c axes (Fig. 3), it is clear that 
Hb stabilizes the magnetic phase, while a range of Hc strength val-
ues stabilize superconductivity with the highest re-entrant magnetic 
field values observed.

This ferromagnetic fluctuation scenario is qualitatively con-
sistent with the wider picture of field-induced superconducting  
phases in UTe2, yet a very important distinction exists between 
the SCFP phase and the field-induced superconducting phase in 
URhGe: the SCFP phase exists only in the field-polarized state.  
This challenges the current theory proposed for URhGe,  
which allows superconductivity to exist on both sides of the  
phase boundary7,19,20.

Through the suppression of the orbital limit, reduced dimen-
sionality has been theorized to stabilize high-field superconductiv-
ity21. A model proposed by Lebed and Sepper8 invoking spin-triplet 
pairing predicts re-entrant superconductivity at very high magnetic 
fields applied transverse to the axis of a quasi-one-dimensional 
conductor. The field-induced lower dimensionality is field–angle 
dependent and facilitates the recovery of the zero-field supercon-
ducting critical temperature, as we observe in SCFP (Figs. 3 and 4). 
The possibility that field-stabilizing effects may also exist in quasi-
two-dimensional superconductors21 suggests that high-field dimen-
sionality is a useful starting point for understanding the SCFP phase. 
Furthermore, the suppression of the orbital limit permits supercon-
ductivity in a pure material to survive in any magnetic field, making 
UTe2 an exciting basis for further testing of the limits of high-field-
boosted superconductivity.

The existence of the SCFP phase in only the field-polarized state, 
and in such a high magnetic field, suggests that the superconducting 
state probably has odd parity with time-reversal symmetry breaking. 
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Fig. 1 | Magnetic field-induced superconducting and polarized phases 
of UTe2. a, Sketch of how the magnetic field is applied with respect to the 
three crystallographic axes of UTe2. b, Top view of the sample platform 
with a two-axis rotator used in d.c. field measurements to achieve the 
best alignment. c, Magnetic field–angle phase diagram showing the three 
superconducting phases SCPM, SCRE and SCFP. FP is the field-polarized 
phase. The magnetic field is rotated within the a–b and b–c planes. The 
critical field values of the SCPM and SCRE phases are based on d.c. field 
measurements, and those of the SCFP and FP phases are based on pulsed 
field measurements. The SCRE phase was not observed for angles of θ larger 
than 3.9° in the b–c plane (Supplementary Fig. 1). The dashed lines are 
guides to the eye.
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