Quantum Sensing (condensed matter perspective)

Ilya Esterlis

Wisconsin Summer School for Quantum Science, UW Madison

August 28, 2024

What is quantum sensing?

 $\label{eq:Quantum sensing} \begin{array}{l} \mbox{Quantum sensing} = \mbox{utilizing of a quantum mechanical (QM) system as a sensor for physical quantities} \end{array}$

What is quantum sensing?

Quantum sensing = utilizing of a quantum mechanical (QM) system as a sensor for physical quantities

Quantum sensors capitalize on extreme sensitivity of quantum systems to their environment

 $1.\ \mathsf{QM}$ system with discrete energy levels

 $1.\ \mathsf{QM}$ system with discrete energy levels

$$\begin{array}{c|c} & |1\rangle \\ \hline & & \\ & & \\ & & \\ \hline & & \\ &$$

- 2. Ability to initialize and "read out" quantum state
- 3. Ability to manipulate quantum state: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}$

4. QM sensor should interact with the system of interest. Ex: charged ions couple to *E*-fields, spins couple to *B*-fields, etc...

4. QM sensor should interact with the system of interest. Ex: charged ions couple to *E*-fields, spins couple to *B*-fields, etc...

4. QM sensor should interact with the system of interest. Ex: charged ions couple to *E*-fields, spins couple to *B*-fields, etc...

Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Initalization	Readout	Type
Neutral atoms						
Atomic vapor	Atomic spin	Magnetic field, rotation,	dc-GHz	Optical	Optical	II, III
Cold clouds	Atomic spin	time/frequency Magnetic field, acceleration, time/frequency	dc-GHz	Optical	Optical	п, ш
Trapped ion(s)						
	Long-lived electronic state Vibrational mode	Time/frequency Rotation Electric field, force	THz MHz	Optical Optical Optical	Optical Optical Optical	п, ш п п
Rydberg atoms						
	Rydberg states	Electric field	dc, GHz	Optical	Optical	II, III
Solid-state spins (ensen	nbles)					
NMR sensors NV ^b center ensembles	Nuclear spins Electron spins	Magnetic field Magnetic field, electric field, temperature, pressure, rotation	dc dc-GHz	Thermal Optical	Pick-up coil Optical	Ш Ш
Solid-state spins (single	e spins)					
P donor in Si Semiconductor quantum dots	Electron spin Electron spin	Magnetic field Magnetic field, electric field	dc-GHz dc-GHz	Thermal Electrical, optical	Electrical Electrical, optical	П 1, П
Single NV ^b center	Electron spin	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	п
Superconducting circuit	ts					
ŜQUID ^e	Supercurrent	Magnetic field	dc-GHz	Thermal	Electrical	I, II
Flux qubit	Circulating currents	Magnetic field	dc-GHz	Thermal	Electrical	П
Charge qubit	Charge eigenstates	Electric field	dc-GHZ	Inermai	Electrical	п
Elementary particles Muon	Muonic spin	Magnetic field	dc	Radioactive	Radioactive	п
Neutron	Nuclear spin	Magnetic field, phonon density, gravity	dc	Bragg scattering	Bragg scattering	п
Other sensors						
SET ^d	Charge eigenstates	Electric field	dc-MHz	Thermal	Electrical	Ι
Optomechanics	Phonons	Force, acceleration, mass, magnetic field, voltage	kHz-GHz	Thermal	Optical	Ι
Interferometer	Photons, (atoms, molecules)	Displacement, refractive index				П, Ш

TABLE I. Experimental implementations of quantum sensors.

Degen, Reinhard, Cappellaro, Quantum sensing (2017)

Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Initalization	Readout	Type ^a
Neutral atoms						
Atomic vapor	Atomic spin	Magnetic field, rotation,	dc-GHz	Optical	Optical	II, III
Cold clouds	Atomic spin	time/frequency Magnetic field, acceleration, time/frequency	dc-GHz	Optical	Optical	П, Ш
Trapped ion(s)						
	Long-lived	Time/frequency Rotation	THz	Optical	Optical	п, ш
	Vibrational mode	Electric field, force	MHz	Optical	Optical	п
Rydberg atoms						
	Rydberg states	Electric field	dc, GHz	Optical	Optical	П, Ш
Solid-state spins (ensembles)	Magnetic field	4.	Thornwol	Disk up soil	п
NWR sensors NV ^b center ensembles	Electron spins	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	Ш
Solid-state spins (single spins)					
P donor in Si Semiconductor quantum dots	Electron spin Electron spin	Magnetic field Magnetic field, electric field	dc-GHz dc-GHz	Thermal Electrical, optical	Electrical Electrical, optical	П І, П
Single NV ^b cen	ter Electron spin	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	п
Superconducting of	ircuits					
SQUID	Supercurrent	Magnetic field	dc-GHz	Thermal	Electrical	I, II
Charge qubit	Charge eigenstates	Electric field	dc-GHz dc-GHz	Thermal	Electrical	П
Elementary particl	es					
Muon	Muonic spin	Magnetic field	dc	Radioactive	Radioactive	ш
Neutron	Nuclear spin	Magnetic field, phonon density, gravity	dc	Bragg scattering	Bragg scattering	п
Other sensors						
SET ^d	Charge eigenstates	Electric field	dc-MHz	Thermal	Electrical	I
Optomechanics	Phonons	Force, acceleration, mass, magnetic field, voltage	kHz-GHz	Thermal	Optical	I
Interferometer	Photons, (atoms, molecules)	Displacement, refractive index				П, Ш

TABLE I. Experimental implementations of quantum sensors	TABLE I.	Experimental	implementations of	quantum sensors.
--	----------	--------------	--------------------	------------------

Degen, Reinhard, Cappellaro, Quantum sensing (2017)

Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Initalization	Readout	Type ^a
Neutral atoms						
Atomic vapor	Atomic spin	Magnetic field, rotation,	dc-GHz	Optical	Optical	П, Ш
Cold clouds	Atomic spin	time/frequency Magnetic field, acceleration, time/frequency	dc-GHz	Optical	Optical	П, Ш
Tranned ion(s)		/				
copped con(c)	Long-lived electronic state Vibrational mode	Time/frequency Rotation Electric field, force	THz MHz	Optical Optical Optical	Optical Optical Optical	п, ш п п
Rydberg atoms						
	Rydberg states	Electric field	dc, GHz	Optical	Optical	II, III
Solid-state spins (enser	nbles)					
NMR sensors	Nuclear spins	Magnetic field	dc	Thermal	Pick-up coil	п
NV ^b center	Electron spins	Magnetic field,	dc-GHz	Optical	Optical	п
ensembles		electric field, temperature, pressure, rotation				
Solid-state spins (single	e spins)					
P donor in Si	Electron spin	Magnetic field	dc-GHz	Thermal	Electrical	п
Semiconductor	Electron spin	Magnetic field,	dc-GHz	Electrical,	Electrical, optical	і, п
Single NV ^b center	Electron spin	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	п
Superconducting circui	ts					
SQUID ^e Flux qubit Charge qubit	Supercurrent Circulating currents Charge eigenstates	Magnetic field Magnetic field Electric field	dc-GHz dc-GHz dc-GHz	Thermal Thermal Thermal	Electrical Electrical Electrical	і, П П П
Elementary particles Muon	Muonic spin	Magnetic field	dc	Radioactive	Radioactive	п
Neutron	Nuclear spin	Magnetic field, phonon density, gravity	dc	Bragg scattering	Bragg scattering	п
Other sensors		0 0				
SET ^d	Charge eigenstates	Electric field	dc-MHz	Thermal	Electrical	I
Optomechanics	Phonons	Force, acceleration, mass, magnetic	kHz-GHz	Thermal	Optical	I
Interferometer	Photons, (atoms, molecules)	Displacement, refractive index				П, Ш

TABLE I. Experin	mental implementation	ns of quantum sensors.
------------------	-----------------------	------------------------

Degen, Reinhard, Cappellaro, Quantum sensing (2017)

QUANTUM ELECTRONICS

Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

S. Kolkowitz,^{1*} A. Safira,^{1*} A. A. High,^{1,2} R. C. Devlin,² S. Choi,¹ Q. P. Unterreithmeier,¹ D. Patterson,¹ A. S. Zibrov,¹ V. E. Manucharyan,³ H. Park,^{1,2} \uparrow M. D. Lukin¹ \uparrow

QUANTUM ELECTRONICS

Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

S. Kolkowitz,^{1*} A. Safira,^{1*} A. A. High,^{1,2} R. C. Devlin,² S. Choi,¹ Q. P. Unterreithmeier,¹ D. Patterson,¹ A. S. Zibrov,¹ V. E. Manucharyan,³ H. Park,^{1,2} \uparrow M. D. Lukin¹ \uparrow

• Quantum sensor = nitrogen-vacancy (NV) center in diamond

QUANTUM ELECTRONICS

Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

S. Kolkowitz,^{1*} A. Safira,^{1*} A. A. High,^{1,2} R. C. Devlin,² S. Choi,¹ Q. P. Unterreithmeier,¹ D. Patterson,¹ A. S. Zibrov,¹ V. E. Manucharyan,³ H. Park,^{1,2} \uparrow M. D. Lukin¹ \uparrow

- Quantum sensor = nitrogen-vacancy (NV) center in diamond
- Signal = magnetic noise (random fluctuations of magnetic field)

QUANTUM ELECTRONICS

Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

S. Kolkowitz,^{1*} A. Safira,^{1*} A. A. High,^{1,2} R. C. Devlin,² S. Choi,¹ Q. P. Unterreithmeier,¹ D. Patterson,¹ A. S. Zibrov,¹ V. E. Manucharyan,³ H. Park,^{1,2} \uparrow M. D. Lukin¹ \uparrow

- Quantum sensor = nitrogen-vacancy (NV) center in diamond
- Signal = magnetic noise (random fluctuations of magnetic field)
- System = slab of silver ("normal metal")

- NV center: point defect in diamond
- substitutional nitrogen + nearest neighbor vacancy
- NV⁻ has three low-energy states (spin *S* = 1):

- NV center: point defect in diamond
- substitutional nitrogen + nearest neighbor vacancy
- NV⁻ has three low-energy states (spin *S* = 1):

- NV center: point defect in diamond
- substitutional nitrogen + nearest neighbor vacancy
- NV⁻ has three low-energy states (spin *S* = 1):

- NV center: point defect in diamond
- substitutional nitrogen + nearest neighbor vacancy
- NV⁻ has three low-energy states (spin *S* = 1):

NV center \leftrightarrow single qubit nanoscale magnetometer

NV operation

Shine green, record red

Hongkun Park lab, Harvard

NV operation

Hong, et. al., Nanoscale magnetometry with NV centers in diamond (2013)

NV measuring schemes

Casola, van der Sar, and Yacoby, *Probing condensed matter physics with magnetometry based on NV centers in diamond* (2018)

NV measuring schemes

Applying fields (varying ΔE), varying temperature T, NV distance d, etc. yields information about sample of interest.

Casola, van der Sar, and Yacoby, *Probing condensed matter physics with magnetometry based on NV centers in diamond* (2018)

QUANTUM ELECTRONICS

Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

S. Kolkowitz,¹* A. Safira,¹* A. A. High,^{1,2} R. C. Devlin,² S. Choi,¹ Q. P. Unterreithmeier,¹ D. Patterson,¹ A. S. Zibrov,¹ V. E. Manucharyan,³ H. Park,^{1,2} \uparrow M. D. Lukin¹ \uparrow

Question: What do we see when we bring an NV center near the surface of an electrical conductor?

Electrical conductors

Conductors allow the flow of electrons (e.g, a copper wire):

I = V/R, R = resistance

Electrical conductors

Conductors allow the flow of electrons (e.g, a copper wire):

I = V/R, R = resistance

R is determined by microscopic properties of a conductor, and its shape:

Electrical conductors

Conductors allow the flow of electrons (e.g, a copper wire):

I = V/R, R = resistance

R is determined by microscopic properties of a conductor, and its shape:

In the simplest situation, conductors obey the microscopic Ohm's law:

$$\vec{J}(x,t) = \sigma \vec{E}(x,t).$$

$$m\dot{\vec{v}} = -e\vec{E} - rac{m}{ au_D}\vec{v}$$

$$m\dot{ec{v}} = -eec{E} - rac{m}{ au_D}ec{v}$$

Steady state:
$$\dot{\vec{v}} = 0$$
, $\Rightarrow \vec{v} = -\frac{e\tau_D}{m}\vec{E}$

$$m\dot{ec{v}} = -eec{E} - rac{m}{ au_D}ec{v}$$

Steady state:
$$\dot{\vec{v}} = 0$$
, $\Rightarrow \vec{v} = -\frac{e\tau_D}{m}\vec{E}$
 $\vec{J} = -en\vec{v} \Rightarrow \vec{J} = \sigma\vec{E}$, $\sigma = \frac{ne^2\tau_D}{m}$

$$m\dot{\vec{v}} = -e\vec{E} - rac{m}{ au_D}\vec{v}$$

Steady state:
$$\dot{\vec{v}} = 0$$
, $\Rightarrow \vec{v} = -\frac{e\tau_D}{m}\vec{E}$
 $\vec{J} = -en\vec{v} \Rightarrow \vec{J} = \sigma\vec{E}$, $\sigma = \frac{ne^2\tau_D}{m}$

mean free-path: $\ell = v_0 \tau_D$, v_0 = electron speed between collisions.

Johnson-Nyquist noise (1928)

Even in the *absence* of an applied field, thermal motion of e^- in a conductor leads to current fluctuations:

$$\frac{1}{2}m\langle v_{\rm th}^2\rangle = \frac{3}{2}k_{\rm B}T \quad ({\rm equipartition})$$

Johnson-Nyquist noise (1928)

Even in the *absence* of an applied field, thermal motion of e^- in a conductor leads to current fluctuations:

$$\frac{1}{2}m\langle v_{\rm th}^2\rangle = \frac{3}{2}k_{\rm B}T \quad ({\rm equipartition})$$

Johnson-Nyquist noise (1928)

Even in the *absence* of an applied field, thermal motion of e^- in a conductor leads to current fluctuations:

$$\frac{1}{2}m\langle v_{\rm th}^2\rangle = \frac{3}{2}k_{\rm B}T \quad (\text{equipartition})$$

$$V_{\rm rms}^2 = \overline{V^2} = 4k_{\rm B}TR\Delta f, \quad \overline{I^2} = \frac{4k_{\rm B}T\Delta f}{R}$$

Noise spectral density (more refined information)

Consider electron velocity v(t₀) and at a later time v(t₀ + t). A useful quantity is:

$$C_{v}(t) = \int_{-\infty}^{\infty} \mathrm{d}t_{0} v(t_{0}+t)v(t_{0})$$

Measure of the correlation between the velocity at times t_0 and $t_0 + t$.

Noise spectral density (more refined information)

Consider electron velocity v(t₀) and at a later time v(t₀ + t). A useful quantity is:

$$C_{v}(t) = \int_{-\infty}^{\infty} \mathrm{d}t_{0} v(t_{0}+t)v(t_{0})$$

Measure of the correlation between the velocity at times t_0 and $t_0 + t$.

• More relevant is the Fourier transform:

$$S_{\nu}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}t \ e^{-i\omega t} C_{\nu}(t)$$
 (noise spectral density)

Noise spectral density (more refined information)

Consider electron velocity v(t₀) and at a later time v(t₀ + t). A useful quantity is:

$$C_{v}(t) = \int_{-\infty}^{\infty} \mathrm{d}t_{0} v(t_{0}+t)v(t_{0})$$

Measure of the correlation between the velocity at times t_0 and $t_0 + t$.

• More relevant is the Fourier transform:

$$S_{\nu}(\omega) = \int_{-\infty}^{\infty} \mathrm{d}t \ e^{-i\omega t} C_{\nu}(t)$$
 (noise spectral density)

• A reasonable approximation:

$$\begin{split} C_{v}(t) &= \overline{v^{2}} e^{-t/\tau_{c}}, \quad \tau_{c} = \text{noise correlation time}, \quad \overline{v^{2}} \sim k_{\mathrm{B}} T/m \\ \Rightarrow S_{v}(\omega) &= 2\overline{v^{2}} \tau_{c} \frac{1}{1 + (\omega \tau_{c})^{2}} \approx 2\overline{v^{2}} \tau_{c} \\ \text{Johnson noise: } S_{I}(\omega) &= \frac{4k_{\mathrm{B}} T}{R} \end{split}$$

Putting everything together: NV center near a conductor

Current fluctuations \Rightarrow noisy magnetic fields *B* above the conductor

B-field at the position of the NV \Rightarrow transitions between levels with rate Γ

NV center near a conductor (experiment)

Decay of $|0\rangle$ state as a function of time

NV transition rate Γ

$$H_{\text{interaction}} = \gamma B(t) (|0\rangle \langle 1| + |1\rangle \langle 0|)$$

NV transition rate Γ

$$H_{\text{interaction}} = \gamma B(t) (|0\rangle \langle 1| + |1\rangle \langle 0|)$$

Transition rate is determined by "Fermi's golden rule"

$$\Gamma = |\langle 1| H_{\text{interaction}}(\omega = \Delta E/\hbar) |0\rangle|^2$$

NV transition rate Γ

$$H_{\text{interaction}} = \gamma B(t) (|0\rangle \langle 1| + |1\rangle \langle 0|)$$

Transition rate is determined by "Fermi's golden rule"

$$\Gamma = |\langle 1|H_{\text{interaction}}(\omega = \Delta E/\hbar)|0\rangle|^2$$

$$\Gamma = \gamma^2 S_B(\omega = \Delta/\hbar) \approx \gamma^2 S_B(\omega = 0) = \gamma^2 \overline{B^2} \tau_c$$

Q: What are $\overline{B^2}$ and τ_c ? How do they depend on d, T, etc...?

NV transition rate

$$\Gamma = \gamma^2 \overline{\mathbf{B}^2} \tau_c$$

Magnetic field at heigh d from e^- moving in the conductor:

$$B = \frac{\mu_0 ev}{4\pi d^2} \quad \Rightarrow \overline{B^2} = \frac{\mu_0^2 e^2}{16\pi^2 d^4} \overline{v^2} \sim \frac{\mu_0^2 e^2}{d^4} \frac{k_{\rm B} T}{m}$$

L. S. Langsjoen, A. Poudel, M. G. Vavilov, R. Joynt, *Qubit relaxation from evanescent-wave Johnson noise* (2012)

NV transition rate

$$\Gamma = \gamma^2 \overline{\mathbf{B}^2} \tau_c$$

Magnetic field at heigh d from e^- moving in the conductor:

$$B = \frac{\mu_0 ev}{4\pi d^2} \quad \Rightarrow \overline{B^2} = \frac{\mu_0^2 e^2}{16\pi^2 d^4} \overline{v^2} \sim \frac{\mu_0^2 e^2}{d^4} \frac{k_{\rm B} T}{m}$$

Many electrons will contribute to the *B*-field noise: estimate $N \sim nd^3$, where n = electron density and the "sensing volume" $\sim d^3$.

L. S. Langsjoen, A. Poudel, M. G. Vavilov, R. Joynt, *Qubit relaxation from evanescent-wave Johnson noise* (2012)

NV transition rate

$$\Gamma = \gamma^2 \overline{B^2} \tau_c$$

Magnetic field at heigh d from e^- moving in the conductor:

$$B = \frac{\mu_0 ev}{4\pi d^2} \quad \Rightarrow \overline{B^2} = \frac{\mu_0^2 e^2}{16\pi^2 d^4} \overline{v^2} \sim \frac{\mu_0^2 e^2}{d^4} \frac{k_{\rm B} T}{m}$$

Many electrons will contribute to the *B*-field noise: estimate $N \sim nd^3$, where n = electron density and the "sensing volume" $\sim d^3$.

$$\Rightarrow \Gamma \sim \frac{\mu_0^2}{d} k_{\rm B} T \frac{n e^2 \tau_c}{m}$$

L. S. Langsjoen, A. Poudel, M. G. Vavilov, R. Joynt, *Qubit relaxation from evanescent-wave Johnson noise* (2012)

NV transition rate (cont.)

$$\Gamma \sim \frac{\mu_0^2}{d} k_{\rm B} T \frac{n e^2 \tau_c}{m}$$

NV transition rate (cont.)

$$\Gamma \sim \frac{\mu_0^2}{d} k_{\rm B} T \frac{n e^2 \tau_c}{m}$$

From the Drude model $\sigma = ne^2 \tau_D/m$, with mean-free path $\ell = v_0 \tau_D$. If $\ell < d$, then $\tau_c = \tau_D$.

NV transition rate (cont.)

$$\Gamma \sim \frac{\mu_0^2}{d} k_{\rm B} T \frac{n e^2 \tau_c}{m}$$

From the Drude model $\sigma = ne^2 \tau_D/m$, with mean-free path $\ell = v_0 \tau_D$. If $\ell < d$, then $\tau_c = \tau_D$.

$$\Gamma \sim \frac{\mu_0^2}{d} k_{\rm B} T \sigma$$

NV transition rate (experiment)

NV transition rate (experiment)

Noise for $d < \ell$

$$\Gamma \sim \frac{\mu_0^2}{d} \frac{ne^2}{m} k_{\rm B} T \tau_c$$

Q: What happens when the NV is at a distance $d < \ell$, the mean-free path? Relaxation is *qualitatively changed* owing to ballistic motion of e⁻.

Roughly:
$$\tau_c \sim d/v_0$$

Noise for $d < \ell$ (experiment)

Noise for $d < \ell$ (experiment) $(T_1 = 1/\Gamma)$

Experiment shows saturation of $\Gamma \sim 1/d$ as $d \rightarrow 0$.

Ohmic conductivity predicts $\Gamma \sim d \rightarrow 0$ as $d \rightarrow 0$.

$$au_{c} \sim d/v_{0} \quad \Rightarrow \quad \Gamma \sim \mu_{0}^{2} \frac{ne^{2}k_{\mathrm{B}}T}{mv_{0}}$$

Noise for $d < \ell$

A proper understanding of this "ballistic" regime requires modification of Ohm's law in terms of "non-local conductivity":

$$J(x,t) = \int \mathrm{d}t' \mathrm{d}x' \sigma(x-x',t-t') E(x',t')$$

If we consider an oscillating field $E = E_0 e^{i(qx-\omega t)}$ the induced current is:

$$J(x,t) = \sigma(q,\omega)E_0e^{i(qx-\omega t)}, \quad \sigma(q,\omega) = F.T. \text{ of } \sigma(x,t)$$

In an NV experiment, we (roughly) probe $\sigma(q \sim 1/d, \omega = \Delta E/h)$.

Noise probed by a quantum sensor yields information about nonlocal conductivity – useful for studying a variety of condensed matter systems.

PHYSICAL REVIEW B 95, 155107 (2017)

Magnetic noise spectroscopy as a probe of local electronic correlations in two-dimensional systems

Kartiek Agarwal,^{1,*} Richard Schmidt,² Bertrand Halperin,¹ Vadim Oganesyan,³ Gergely Zaránd,⁴ Mikhail D. Lukin,¹ and Eugene Demler¹

PHYSICAL REVIEW LETTERS 132, 246504 (2024)

Local Noise Spectroscopy of Wigner Crystals in Two-Dimensional Materials

Pavel E. Dolgireve,^{1,*} Ilya Esterlis,^{2,1,*} Alexander A. Zibrov,¹ Mikhail D. Lukin,¹ Thierry Giamarchi⁰,³ and Eugene Demler⁴

PHYSICAL REVIEW B 98, 195433 (2018)

Editors' Suggestion

Probing one-dimensional systems via noise magnetometry with single spin qubits

Joaquin F. Rodriguez-Nieva,¹ Kartiek Agarwal,² Thierry Giamarchi,³ Bertrand I. Halperin,¹ Mikhail D. Lukin,¹ and Eugene Demler¹

Noise measurements with a quantum sensor can also (conceivably) be used to study magnetic insulators (e.g., spin liquids)

PHYSICAL REVIEW B 99, 104425 (2019)

Editors' Suggestion

Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits

Shubhayu Chatterjee, ^{1,2} Joaquin F. Rodriguez-Nieva, ¹ and Eugene Demler¹ ¹Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA ²Department of Physics, University of California, Berkeley, California 94720, USA

Quantum sensing

Studied noise magnetometry with NV-centers as example quantum sensor

What we did not discuss:

- NV-centers for sensing coherent (not fluctuating) static and time-varying B-fields¹
- More broadly: Use of quantum coherence (superposition) to make measurements. Use of entanglement to improve sensitivity and precisions of measurements.²

¹Casola, van der Sar, and Yacoby, *Probing condensed matter physics with magnetometry based on NV centers in diamond* (2018) ²Degen, Reinhard, Cappellaro, *Quantum sensing* (2017)

Thank you for your attention