Sorting through the billions of subatomic particles that zip through its frozen cubic-kilometer-sized detector each year, researchers using the IceCube Neutrino Observatory have gathered powerful new evidence in support of 2013 observations confirming the existence of cosmic neutrinos.
The new observations are important because they herald a new form of astronomy using neutrinos, nearly massless high energy particles generated in nature’s accelerators: black holes, massive exploding stars and the energetic cores of galaxies. In the new study, the detection of 21 ultra high-energy muons – secondary particles created on the very rare occasions when neutrinos interact with other particles – from the mass of particles coursing upward through the IceCube detector provides independent confirmation of astrophysical neutrinos from our galaxy as well as cosmic neutrinos from sources outside the Milky Way.
The results are published today in the journal Physical Review Letters.