In the technology world, complex oxides are “wonder” materials that can have a wide array of electronic, magnetic and optical properties. As a result, they could enable next-generation electronics, data storage, sensing, energy technologies, biomedical devices, and many other applications.
Stacking ultrathin complex oxide single-crystal layers—or those composed of geometrically arranged atoms—allows researchers to create new heterostructures with hybrid properties and multiple functionalities. Now, a revolutionary platform developed by engineers at the University of Wisconsin-Madison and MIT will enable researchers to achieve these stacks in virtually unlimited combinations.
The team, including physics Professor Mark Rzchowski and grad student Julian Irwin, published details of the advance in the Feb. 5, 2020, issue of the journal Nature.