Chicago Quantum Exchange, including UW–Madison, welcomes seven new partners in tech, computing and finance, to advance research and training

The Chicago Quantum Exchange, a growing intellectual hub for the research and development of quantum technology, has added to its community seven new corporate partners in computing, technology and finance that are working to bring about and primed to take advantage of the coming quantum revolution.

These new industry partners are Intel, JPMorgan Chase, Microsoft, Quantum Design, Qubitekk, Rigetti Computing, and Zurich Instruments.

The Chicago Quantum Exchange and its corporate partners advance the science and engineering necessary to build and scale quantum technologies and develop practical applications. The results of their work – precision data from quantum sensors, advanced quantum computers and their algorithms, and securely transmitted information – will transform today’s leading industries. The addition of these partners brings a total of 13 companies into the Chicago Quantum Exchange to work with scientists and engineers at universities and the national laboratories in the region.

“These new corporate partners join a robust collaboration of private and public universities, national laboratories, companies, and non-profit organizations. Together, their efforts — with federal and state support —will enhance the nation’s leading center for quantum information and engineering here in Chicago,” said University of Chicago Provost Ka Yee C. Lee.

Based at the University of Chicago’s Pritzker School of Molecular Engineering, the Chicago Quantum Exchange is anchored by the University of Chicago, the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory (both operated for DOE by the University of Chicago), and the University of Illinois at Urbana-Champaign, and includes the University of Wisconsin-Madison and Northwestern University.

“Developing a new technology at nature’s smallest scales requires strong partnerships with complementary expertise and significant resources. The Chicago Quantum Exchange enables us to engage leading experts, facilities and industries from around the world to advance quantum science and engineering,” said David Awschalom, the Liew Family Professor in Molecular Engineering at the University of Chicago, senior scientist at Argonne, and director of the Chicago Quantum Exchange. “Our collaborations with these companies will be crucial to speed discovery, develop quantum applications and prepare a skilled quantum workforce.”

Chicago Quantum Exchange member institutions engage with corporate partners in collaborative research efforts, joint workshops to develop new research directions, and opportunities to train future quantum engineers. The CQE has existing partnerships with Boeing, IBM, Applied Materials, Inc., Cold Quanta, HRL Laboratories, LLC, and Quantum Opus, LLC.

people in blue clean suits in a computer / electronics room
Scientists in Microsoft Quantum Lab Delft conducting research in pursuit of a topologically protected qubit. Microsoft is one of seven new computing, tech and finance companies to join the Chicago Quantum Exchange | Microsoft

The CQE’s newest corporate partners include a broader set of companies ranging in interest and expertise from quantum communication hardware to quantum computing systems and controls to finance and cryptography applications.

They include:

  • Intel is advancing a systems-level approach to quantum research that demonstrates quantum practicality and a path to commercially viable quantum computing systems. Its research efforts – in partnership with QuTech, the quantum institute of TU Delft and TNO—include technology advancements in silicon spin qubits, control and interconnect systems for large-scale quantum systems, and quantum algorithms.
  • JPMorgan Chase is a leader in the field of quantum algorithms and applications for financial use cases, such as portfolio optimization, option pricing and reinforcement learning, as well as general foundational algorithms with cross-domain applicability, such as quantum search. The firm has made a significant investment in quantum computing, collaborating with multiple quantum providers and forums. Its research team is also actively working in the area of post-quantum cryptography.
  • Microsoft has driven advances in scalable quantum technology for nearly two decades. Their global team of physicists, computer and materials scientists, engineers, developers, and enthusiasts are collaborating with a broad community to advance a full-stack quantum computing system, develop practical solutions, enable a quantum community, and accelerate quantum workforce development.
  • Quantum Design manufactures automated characterization systems that allow research and exploration of new materials & devices. With the partnership, Quantum Design will support research and advanced teaching at the CQE, launching a new student laboratory for quantum measurements and the study of quantum materials.
  • Qubitekk develops and manufactures a variety of key components for quantum networks. Qubitekk provides entangled photon sources in its support for researchers across the CQE working on the Argonne quantum loop.
  • Rigetti Computing builds and delivers integrated quantum systems and offers a distinctive hybrid cloud computing access model for practical near-term applications. The company owns and operates Fab-1, the world’s first dedicated quantum integrated circuit foundry.
  • Zurich Instruments develops advanced instrumentation including quantum control systems that enable reliable control and measurement of superconducting qubits and silicon spin qubits. The company will collaborate with the CQE on student opportunities and research.

Many of the new industry partners already have ongoing or recent engagements with CQE and its member institutions. In recent collaborative research, spectrally entangled photons from a Qubitekk entangled photon source were transported and successfully detected after traveling through one section of the Argonne quantum loop.

Another example of these relationships is the work that University of Chicago computer scientist Fred Chong and his students have done with both Intel and Rigetti Computing on software and hardware solutions. With Intel’s support, Chong’s team invented a range of software techniques to more efficiently execute quantum programs on a coming crop of quantum hardware. For example, they developed methods that take advantage of the hierarchical structure of important quantum circuits that are critical to the future of reliable quantum computation.

Jim Clarke, director of quantum hardware at Intel, looks forward to further collaborations with Chicago Quantum Exchange members.

“Intel remains committed to solving intractable challenges that lie on the path of achieving quantum practicality,” said Clarke. “We’re focusing our research on new qubit technologies and addressing key bottlenecks in their control and connectivity as quantum systems get larger. Our collaborations with members of the Chicago Quantum Exchange will help us harness our collective areas of expertise to contribute to meaningful advances in these areas.”

The Chicago Quantum Exchange’s partnership with JPMorgan Chase will enable the use of quantum computing algorithms and software for secure transactions and high-speed trading.

“We are excited about the transformative impact that quantum computing can have on our industry,” said Marco Pistoia, managing director, head of applied research and engineering at ‎JPMorgan Chase. “Collaborating with the Chicago Quantum Exchange will help us to be among the first to develop cutting-edge quantum algorithms for financial use cases, and experiment with the power of quantum computers on relevant problems, such as portfolio optimization and option pricing.”

Applying quantum science and technology discoveries to areas such as finance, computing and healthcare requires a robust workforce of scientists and engineers. The Chicago Quantum Exchange integrates universities, national laboratories and leading companies to train the next generation of scientists and engineers and to equip those already in the workforce to transition to quantum careers.

“Microsoft is excited to partner with the Chicago Quantum Exchange to accelerate the advancement of quantum computing,” said Chetan Nayak, general manager of Microsoft Quantum Hardware. “It is through these academic and industry partnerships that we’ll be able to scale innovation and develop a workforce ready to harness the incredible impact of this technology.”

Particle collider experiment CMS — and UW physicists who contribute — celebrate 1000th publication

In June 2020, The Compact Muon Solenoid (CMS) collaboration announced the submission of its 1000th scientific publication since the experiment began a decade ago. With multiple University of Wisconsin–Madison physics faculty involved in CMS over the years, the physics department wanted to use this milestone to celebrate their achievements.

CMS is an international collaboration of over 4000 scientists at CERN’s Large Hadron Collider, which churns out data that have contributed immensely to our understanding of particle physics and pointing directions to moving beyond the Standard Model. Amongst its achievements, CMS announced in 2012 the discovery of the Higgs boson, along with ATLAS collaboration.

UW–Madison’s Professor Emeritus Don Reeder, Professor Emeritus Wesley H. Smith, Emeritus Distinguished Scientist Richard Loveless and Professor and current department chair Sridhara Dasu are amongst the founding members of CMS. The team later expanded to include Professor Matt Herndon and Senior Scientists Dr. Sascha Savin and Dr. Armando Lanaro. In 2018, Professor Kevin Black and Professor Tulika Bose joined the physics department.

1000 boxes laid out to make an image of the CMS detector at CERN, and spells "1000 papers"
Image from CERN. The original image can be found at https://cms.cern/news/cms-collaboration-celebrates-1000th-paper

“It’s a proud moment for CMS in general and for the UW CMS group to see our work over the years culminate in this historic milestone!” says Bose, who currently serves as the Deputy U.S. CMS Software and Computing Operations program manager. “We are looking forward to more with the upcoming run and with the High-Luminosity LHC upgrade.”

Of the current UW­–Madison physics faculty involved:

  • Sridhara Dasu currently leads the UW–Madison High Energy Physics group. On CMS, his focus is in better understanding the Higgs boson, searching for its partners, and possible new physics connections, especially to dark matter. He helped design the CMS calorimeter trigger system and continues to dabble in designing its upgrades.
  • Matthew Herndon is involved in the ongoing upgrade of the CSC (cathode strip chamber) forward muon system and well as detailed studies of the performance of the CSC system. He studies the physics of multiple gauge boson interactions and associated new physics phenomena involving multiple gauge bosons.
  • Tulika Bose previously served as the Physics Co-coordinator (PC) of the CMS Experiment during 2017-2019 and as the CMS Trigger Co-coordinator (2014-2016). In addition to her current program manager role, she is involved in physics studies that cover both precision measurements of Standard Model processes as well as direct searches for new physics including dark matter and top quark partners.
  • Kevin Black joined CMS when he joined the UW–Madison physics department in 2018, after 13 years on the CMS companion experiment ATLAS. Since then, he has been involved in the forward muon upgrade project — which will install GEM (Gas Electron Multiplier) detectors — as manager of the U.S. component of the electronic readout project and as deputy run coordinator of the GEM system. His group is focusing on the data-acquisition development for that system.

“I am especially proud of our eighteen PhD graduates who have contributed about two papers each to this set of thousand; one on a search for new physics channel and another on a carefully made measurement,” Dasu says.

Adds Herndon, “It’s an amazing milestone and a testament to the scientific productivity of the CMS experiment!  UW personnel, especially our students, have been a major part of that achievement contributing to nearly 100 of those papers.”

In collaboration with the Physical Sciences Laboratory, the UW Physics team helped design the steel structures and other mechanical systems of the CMS experiment, especially leading the installation, commissioning and operations of the endcap muon system. The UW Physics team has also helped design, build, install and operate the electronics and data acquisition systems, in particular the calorimeter trigger system, and began collecting data from day one of LHC operations. They also collaborated with the HT Condor group of the Department of Computer Science to design and build the Worldwide LHC Computing Grid (WLCG), hosting one of the productive Tier-2 computing centers in Chamberlin.

The UW–Madison group was a key player in the discovery of Higgs boson in 4-lepton decay mode and establishing its coupling to fermions. The group has also searched for new physics especially looking for evidence of beyond the standard model in the form of heavy Higgs bosons that decay to tau-pairs. The group also upgraded the calorimeter trigger system and completed the endcap muon chamber system for the second higher energy run of the LHC. Searches continue for new Higgs partners, rare decays of the SM-like Higgs boson, and searches for new particles. They have added to our repertoire a series of searches for anomalous production of single high energy objects that are indicative of dark matter production in the LHC collisions.

The abundant production of papers proclaiming discoveries or the best measurements to date were possible in large part because of numerous UW–Madison electronics and computing personnel.

“The publication of the 1000th paper of the CMS collaboration is a significant milestone capping the achievement of thousands of physicists worldwide on a wide range of topics that can only be made at this unique instrument and facility,” Black says.

 

Three undergraduate students awarded Hilldale Fellowships

Congratulations to the three physics undergraduate research students who earned Hilldale fellowships for 2020-21! They are:

  • Owen Rafferty, in Robert McDermott’s group
  • Yanlin Wu, in Peter Timbie’s group
  • Yan Qian, in Sau Lan Wu’s group

The Hilldale Undergraduate/Faculty Research Fellowship provides research training and support to undergraduates at UW–Madison. Students have the opportunity to undertake their own research project in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97 – 100 Hilldale awards are available each year.

Vandenbroucke group plays instrumental role in proving viability of innovative gamma-ray telescope

Scientists in the Cherenkov Telescope Array (CTA) consortium have detected gamma rays from the Crab Nebula using the prototype Schwarzschild-Couder Telescope (pSCT), proving the viability of the novel telescope design for use in gamma-ray astrophysics. The announcement was made today by Justin Vandenbroucke, associate professor at the University of Wisconsin–Madison, on behalf of the CTA Consortium at the virtual 236th meeting of the American Astronomical Society (AAS).

“The Crab Nebula is the brightest steady source of TeV, or very high-energy, gamma rays in the sky, so detecting it is an excellent way of proving the pSCT technology,” says Vandenbroucke, who is also affiliated with the Wisconsin IceCube Particle Astrophysics Center (WIPAC) at UW–Madison. “Very high-energy gamma rays are the highest energy photons in the universe and can unveil the physics of extreme objects, including black holes and possibly dark matter.”

Vandenbroucke is coleader of a team made up of WIPAC scientists and other collaborators that developed and operate a critical part of the telescope: its high-speed camera. Vandenbroucke has worked on the design, construction, and integration of the camera since 2009.

Read the full story on the WIPAC website. The WIPAC story was adapted from a CTA press release.

Keith Bechtol, Rob Morgan win UW’s Cool Science Image contest

pieced-together photos of space with a helix nebula the most visibleCongrats to Prof. Keith Bechtol and graduate student Rob Morgan for their winning entry in the UW–Madison Cool Science Images contest! Their winning entry — one of 12 selected out of 101 entries — earns them a large-format print which initially will be displayed in a gallery at the McPherson Eye Research Institute’s gallery in the WIMR building.

This snapshot of the sky contains thousands of distant galaxies, each containing billions of stars. Bechtol and Morgan were looking for the flash of the explosion of a single star, the potential source of a sub-atomic particle called a neutrino, spotted zipping through the Earth by the IceCube Neutrino Observatory at the South Pole. The distant galaxies, swirling billions of light years away, are all the harder to see because of nearby objects, like the pictured Helix Nebula. The image was captured with a Dark Energy Camera and Victor M. Blanco telescope.

To learn more about the Cool Science Images contest and to view the other winning images, please visit https://news.wisc.edu/the-winners-cool-science-images-2020/.

 

Mark Eriksson earns WARF named professorship

Mark Eriksson has been named the John Bardeen Professor of Physics, through the Wisconsin Alumni Research Foundation (WARF) named professorship program.

The WARF named professorship program provides recognition for distinguished research contributions of the UW–Madison faculty. The awards are intended to honor those faculty who have made major contributions to the advancement of knowledge, primarily through their research endeavors, but also as a result of their teaching and service activities.

profile photo of Mark Eriksson
Mark Eriksson

Eriksson joined the UW–Madison physics faculty in 1999. His research has focused on quantum computing, semiconductor quantum dots, and nanoscience. He currently leads a multi-university team focused on the development of spin qubits in gate-defined silicon quantum dots. A goal of this work is to enable quantum computers, which manipulate information coherently, to be built using many of the materials and fabrication methods that are the foundation of modern, classical integrated circuits.

“If you look back at my work here over the last, it’ll be 21 years in August, it’s almost all been collaborative, and I’ve really enjoyed the people I’ve worked with,” Eriksson says. “Going into the future, those collaborations are going to continue, of course. We have a real opportunity to see what semiconductor fabrication technology can do for qubits and quantum computing — how can we make really high-quality, silicon qubits in a way that leverages and makes use of the same technology that people use to make classical computer chips?”

a group of 7 people
Members of the Eriksson Group at a conference in Spain in Fall 2019.

Eriksson’s past and present UW–Madison collaborators include, in addition to many students and postdocs, physics professors Victor Brar, Sue Coppersmith, Bob Joynt, Shimon Kolkowitz, and Robert McDermott; physics senior scientist Mark Friesen; and materials science and engineering professor Max Lagally and scientist Don Savage.

The WARF program asks recipients to choose the name of their professorship. Eriksson, who graduated with a B.S. in physics and mathematics from UW–Madison in 1992, chose fellow alum John Bardeen — a scientist who has the unique honor of being the only person to receive the Nobel Prize in Physics twice.

“Bardeen was one of the inventors of the transistor, and I work with semiconductor qubits which are very similar to transistors in many ways,” Eriksson explains. “It seemed appropriate to choose him, because he was an alum of the university, he’s a Madison native, and he was co-inventor of the transistor.”

Eriksson was one of 11 UW­–Madison faculty awarded WARF named professorships this year. The honor comes with $100,000 in research funding over five years.

“Prof. Mark Eriksson is a world-leading expert in the development of quantum information systems using solid-state quantum dot qubits,” says Sridhara Dasu, physics department chair. “Recognition of his successes in research and his contribution to the training of researchers in this increasingly promising area of quantum information, through the awarding of WARF professorship, is much deserved.”

Profs Eriksson, McDermott, Vandenbroucke awarded UW2020s

Twelve projects have been chosen for Round 6 of the UW2020: WARF Discovery Initiative, including three from faculty in the Department of Physics (Mark Eriksson, Robert McDermott, and Justin Vandenbroucke). These projects were among 92 proposals submitted from across campus. The initiative is funded by the Office of the Vice Chancellor for Research and Graduate Education and the Wisconsin Alumni Research Foundation.

The projects were reviewed by faculty across the university. The UW2020 Council, a group of 17 faculty from all divisions of the university, evaluated the merits of each project based on the reviews and their potential for making significant contributions to their field of study.

The goal of UW2020 is to stimulate and support cutting-edge, highly innovative and groundbreaking research at UW–Madison and to support acquisition of shared instruments or equipment that will foster significant advances in research.

Acquisition of a cryogen-free Physical Properties Measurement System (PPMS) for characterization of quantum materials and devices

The project addresses a barrier for UW–Madison researchers in measuring electronic, magnetic, and thermal properties of quantum materials at low temperatures, namely the increasing high costs of cryogens (liquid helium) and lack of a convenient means to perform these measurements in a shared facility. Low-temperature electronic, magnetic, and thermal properties of materials are crucial for fundamental materials discovery and for applications in quantum information, nonvolatile memory, and energy conversion devices.

This project will acquire a cryogen-free Physical Properties Measurement System (PPMS) and house it as a shared-user facility instrument within the Wisconsin Centers for Nanotechnology (CNT). This instrument would be open for all UW–Madison users.

Currently, these measurements depend on external collaborations or low-temperature setups in PI labs which either consume large amounts of cryogens or require time-consuming reconfigurations from experiment to experiment. Having a cryogen-free PPMS would allow researchers to spend less time and money in setting up experiments, potentially freeing up resources for scientific investigations that include new superconducting and topological material discoveries and characterizations of materials for advanced microelectronics and magnetic memory systems.

PRINCIPAL INVESTIGATOR
Jason Kawasaki, assistant professor of materials science and engineering

CO-PRINCIPAL INVESTIGATOR
Jerry Hunter, director of the Wisconsin Centers for Nanotechnology

CO-INVESTIGATOR
Paul Voyles, professor of materials science and engineering and MRSEC Director

Song Jin, professor of chemistry

Mark Eriksson, professor of physics

Thomas Kuech, professor of chemical and biological engineering

Daniel Rhodes, assistant professor of materials science and engineering

Chang-Beom Eom, professor of materials science and engineering

Paul Evans, professor of materials science and engineering

Michael Arnold, professor of materials science and engineering

Dakotah Thompson, assistant professor of mechanical engineering

Cracking the structure of ice: establishing a cryogenic electron backscatter diffraction and Raman capability at UW–Madison

The structure and physical properties of ice determine the behavior of glaciers, ice sheets, and polar ice caps (both terrestrial and extraterrestrial). Moreover, ice is of interest because of its unique light transmission properties, which are currently being harnessed by one of the world’s largest astrophysical experiments through the UW–led IceCube collaboration.

This project will develop the capability to perform scanning electron microscopy (SEM) of water and CO2 ice in the UW–Madison Geoscience Department, focusing on electron backscatter diffraction (EBSD) analysis for ice microstructure and Raman spectroscopy for ice composition. EBSD of ice is an extremely rare analytical capability worldwide.

Having this highly specialized type of analysis capability for ice will enable advances in glaciology, climate science, physics, materials science and planetary science. This technology can accelerate research on glacial sliding and ice deformation, and inform long-standing questions about the transformation of air bubbles to clathrates in glacial ice and their potential as archives of Earth’s past atmosphere. In addition, understanding the structure of ice is critical, for example, to accurate measurement of cosmic ray interactions in the IceCube Neutrino Observatory.

As the only lab in the U.S. offering combined ice EBSD analysis and ice Raman analysis, UW–Madison will establish itself as a nexus for cryosphere research, attracting many collaborations from outside UW–Madison.

PRINCIPAL INVESTIGATOR
Chloe Bonamici, assistant professor of geoscience

CO-PRINCIPAL INVESTIGATORS
Lucas Zoet, assistant professor of geoscience

Shaun Marcott, associate professor of geoscience

Justin Vandenbroucke, associate professor of physics/WIPAC

John Fournelle, senior scientist of geoscience

CO-INVESTIGATORS
Pavana Prabhakar, assistant professor of civil and environmental engineering

Richard Hartel, professor of food engineering

Hiroki Sone, assistant professor of geological engineering

Interdisciplinary engineering of quantum information systems

This project represents a synergistic effort toward engineering practical quantum information systems (QIS). The research unites the experimental superconducting and semiconducting qubit teams on campus with advanced materials characterization and microwave engineering expertise to uncover the underlying sources of decoherence that limit qubit performance and develop next-generation quantum devices for scalable quantum computing and quantum sensing. This effort will build new interdisciplinary connections that nourish the quantum ecosystem at UW–Madison, cutting across departmental and disciplinary lines.

The potential of QIS has been recognized recently by the $1.4 billion federal National Quantum Initiative, and the newly formed Wisconsin Quantum Institute at UW is home to world-leading efforts in the physics of QIS. This project is a next step in expanding these directions to incorporate the engineering effort necessary to develop practical systems capable of solving real-world problems.

PRINCIPAL INVESTIGATOR
Robert McDermott, professor of physics

CO-PRINCIPAL INVESTIGATORS
Mark Eriksson, professor of physics

Susan Hagness, professor of electrical and computer engineering

Paul Voyles, professor of materials science and engineering

Kangwook Lee, professor of electrical and computer engineering

Physics Department featured in UW article on virtual lab course instruction

It’s one thing to have to move a lecture course online, but lab courses — where students learn by doing — is an entirely different story. University Communications spoke to instructors in Physics, including Prof. Deniz Yavuz and Dr. Jim Reardon, about the transition to online lab instruction.  

Read the full story