X(ray) marks the spot in elemental analysis of 15th century printing press methods

a woman (left, bending down) and a man (right, crouched) position an ancient manuscript into a machine

This story was originally published by University Communications

In 15th century Germany, Johannes Gutenberg developed a printing press, a machine that allowed for mass production of texts. It is considered by many to be one of the most significant technological advancements of the last millennium.

Though Gutenberg often receives credit as the inventor of the printing press, sometime earlier, roughly 5,000 miles away, Koreans had already developed a movable-type printing press.

There is no question that East Asians were first. There is also no question that Gutenberg’s invention in Europe had a far greater impact.

“What is not known is whether Gutenberg knew about the Korean printing or not. And if we could shed light on that question, that would be earth shattering,” says Uwe Bergmann, a professor of physics at the University of Wisconsin–Madison who, with UW–Madison physics graduate student Minhal Gardezi, is part of a large, interdisciplinary team that is analyzing historical texts.

He adds: “But even if we don’t, we can learn a lot about early printing methods, and that will already be a big insight.”

These texts include pages from a Gutenberg bible and Confucian texts, and they’re helping investigate these questions. The team includes 15th century Korean texts experts, Gutenberg experts, paper experts, ink experts and many more.

a person, with essentialy just their hands visible, holds a wooden box that is wrapped with a leather tie and has Korean text on the side
One of the leaves scanned was printed by a Korean movable type printing press in 1442. One of the team members from UNESCO, Angelica Noh, traveled with the preserved documents from Korea to SLAC. IMAGE PROVIDED BY MINHAL GARDEZI

How did two physicists end up participating in a seemingly very non-physics cultural heritage project? Bergmann had previously worked on other historical text analyses, where he pioneered the application of a technique known as X-ray fluorescence (XRF) imaging.

In XRF imaging, a powerful machine called a synchrotron sends an intense and very small X-ray beam — about the diameter of a human hair — at a page of text at a 45-degree angle. The beam excites electrons in the atoms that make up the text, requiring another electron to fill in the space left by the first (all matter is made up of atoms, which contain even smaller components called electrons).

The second electron loses energy in the process, and that energy is released as a small flash of light. A detector placed strategically nearby picks up that light, or its X-ray fluorescence, and measures both its intensity and the part of the light spectrum to which it belongs.

“Every single element on the periodic table emits an X-ray fluorescence spectrum that is unique to that atom when hit with a high-energy X-ray. Based on its ‘color,’ we know exactly which element is present,” says Gardezi. “It’s a very high-precision instrument that tells you all the elements that are at every location in a sample.”

With this information, researchers can effectively create an elemental map of the document. By rapidly scanning a page across the X-ray beam, they can create a record of the XRF spectrum at each pixel. One page can produce several million XRF spectra.

This summer, Bergmann and Gardezi were part of a team that used XRF scanning at the SLAC National Accelerator Laboratory in California to produce elemental maps of several large areas from original pages of a first-edition, 42-line Gutenberg Bible (dating back to 1450 to 1455 A.D.) and from Korean texts dating back to the early part of that. century.

They scanned the texts at a rate of around one pixel every 10 milliseconds, then filtered the data by elemental signature, providing high-resolution maps of which elements are present and in what relative quantities.

a three panel image. The top shows a regular photograph of the Korean text, with a dotted white line around two lines of 6 characters. The second panel shows the XRF of those characters, with a blue backround, a yellow-green hue aorund the characters, and red in the characters themmselves. The bottom panel shows a second XRF scan, but here almost the entire panel is blue, except for the circles of the characters, which are red, indicating the element being filtered was only present in the circles of the text.
A photograph of a scanned Korean text. The white dotted box indicates the areas shown in the middle and bottom panels. Each element produces a unique X-ray fluorescence. After scanning the text, the researchers applied filters for the known XRF patterns of different elements and created a color-coded heat-map of their abundance, from lowest (blue) to highest (red). An element found in only small quantities is in the red circles in the bottom part of the image. IMAGE PROVIDED BY MINHAL GARDEZI

In a way, the work is like digging for treasure from an old map — Gardezi says the researchers do not know exactly what they are looking for, but they are most interested in the unexpected.

For example, she recently presented early results of scans to the team, to demonstrate the approach had worked and that the researchers could separate out different elements. It turns out this isn’t what the team found most interesting.

“Instead, these scholars spent 15-to-20 minutes talking about, ‘Why is (this element) present?’ and coming up with hypotheses,” Gardezi says. “As physicists, we wouldn’t even recognize if something is surprising or not. It’s really this interdisciplinary aspect that tells us what to look for, what the smoking gun is.”

As more questions arise based on the elemental analyses, Bergmann and Gardezi will help guide the team to address those questions quantitatively. They are already planning to recreate some early printings in the lab — with known types, papers and inks — then compare these XRF scans with the originals.

The research may never definitively determine if Gutenberg knew about the Korean presses or if he developed his press independently. But without access to the original presses themselves, these texts hold the only clues to understanding the nature of these transformative machines.

“The more you read about it, the more you learn that there is less certainty about several things related to early printing presses,” Bergmann says. “Maybe this technique will allow us to view these prints as a time capsule and gain invaluable insight into this watershed moment in human history.”

Watch Minhal Gardezi show off XRF at SLAC National Accelerator Laboratory.

The UW–Madison efforts in the project are supported by the Overseas Korean Cultural Heritage Foundation.

Study led by UW–Madison researcher confirms star wreck as source of extreme cosmic particles

Astronomers have long sought the launch sites for some of the highest energy protons in our galaxy. Now, a study using 12 years of data from NASA’s Fermi Gamma-ray Space Telescope (Fermi) confirms that a remnant of a supernova, or star explosion, is just such a place, solving a decade-long cosmic mystery.

a mostly black image of space, with some small white-ish out-of-focus stars, and a large fuzzy pink blob partially overlapping a green-hued amorphous apparition
The newly discovered PeVatron (in pink) is hosted by a supernova remnant (in green) called G106.3+2.7. The supernova remnant is believed to have formed together with the pulsar (in magenta) about 10,000 years ago. Particles accelerated by the shock waves of the supernova remnant interact with the gas in the interstellar medium, producing high-energy gamma-ray emission. Credit: Jayanne English, University of Manitoba, NASA/Fermi/Fang et al. 2022, and Canadian Galactic Plane Survey/DRAO.

Previously, Fermi has shown that the shock waves of exploded stars boost particles to speeds comparable to that of light. Called cosmic rays, these particles mostly take the form of protons, but can include atomic nuclei and electrons. Because they all carry an electric charge, their paths become scrambled as they whisk through our galaxy’s magnetic field, which masks their origins. But when these particles collide with interstellar gas near the supernova remnant (SNR), they produce a telltale glow in gamma rays—the highest-energy light there is.

“Theorists think the highest energy cosmic ray protons in the Milky Way reach a million billion electron volts, or PeV energies,” said Ke Fang, an assistant professor of physics at the Wisconsin IceCube Particle Astrophysics Center (WIPAC), a research center at the University of Wisconsin–Madison. “The precise nature of their sources, which we call PeVatrons, has been difficult to pin down.”

Fang, who led the study, performed the data analysis and developed the theory models. The research team identified a few suspected PeVatrons, including one at the center of our galaxy. Naturally, SNR top the list of candidates. Yet out of about 300 known remnants, only a few have been found to emit gamma rays with sufficiently high energies.

Read the full story

Higgs @ Ten: UW–Madison physicists’ past and future roles

Ten years ago, on July 4, 2012, the CMS and ATLAS collaborations at the Large Hadron Collider (LHC) at CERN — including many current and former UW–Madison physicists — announced they had discovered a particle that was consistent with predictions of the Higgs boson.

In the ten years since, scientists have confirmed the finding was the Higgs boson, but its discovery opened more avenues of discovery than it closed. Now, with the LHC back up and running, delivering proton collisions at unprecedented energies, high energy physicists are ready to investigate even more properties of the particle.

cover of an issue of Physics Letters B, with data plots of the Higgs discovery in the foreground and a background aerial shot of CERN
The Higgs discovery was published in Physics Letters B and received the cover

“The Higgs plays an incredibly important role in particle physics,” says Kevin Black, who previously worked on ATLAS before joining the UW–Madison physics department and is now part of CMS. “But for being such a fundamental particle, for giving mass to all elementary particles, for being deeply connected to flavor physics and why we have different generations of matter particles — we know a relatively small amount about it.”

Finding the Higgs particle had been one of the main goals of the LHC. The particle was first theorized by physicist Peter Higgs (amongst others, but his name was forever associated with it) in the 1960s.

“The basic idea was that if you just had electromagnetic and strong interactions, then the theory would have been fine if you just put a mass in by hand for the elementary particles,” explains Black. “The weak interaction spoils that, and it was a big question at the time of whether or not the whole structure of particle physics and of quantum field theory were actually going to be consistent.”

Higgs and others realized that there was a way to make it happen if they introduced a new field, which then became the Higgs field and the Higgs particle, that can interact with all other matter and give particles their mass. The Higgs particle, however, eluded experimental observation, leaving a gap in the Standard Model. In retrospect, one of the difficulties was that the mass of the Higgs — around 125 GeV — was much larger than the technology at the time could reach experimentally.

In earlier generations of experiments, UW–Madison physicist Sau Lan Wu participated in searches using the ALEPH experiment that placed a strong lower bound on the mass of the Higgs boson. Also at UW–Madison, Duncan Carlsmith, Matthew Herndon and their groups participated in searches at the CDF experiment that placed an upper bound on the mass of the Higgs boson and saw evidence of Higgs production in the region of mass where it was finally discovered.

Wesley Smith holds a large electronics board full of circuits and wires
Wesley Smith shows the electronics of the trigger system which led to the discovery of the Higgs Boson. Smith led the team that designed and developed the trigger system.

This research set the stage for the experiments that were perfectly designed to discover the Higgs boson: the world’s most powerful hadron collider, the LHC, and the most capable pair of high energy collider experiments ever built, CMS and ATLAS.

The UW–Madison CMS group had three major projects: the trigger project led by Wesley Smith (now emeritus faculty), and the end cap muon system led by Don Reeder (now emeritus faculty) and Dick Loveless (now emeritus scientist), and a computing project led by Sridhara Dasu, who is current head of the group. Having made essential detector contributions, the UW–Madison CMS group, including Herndon, moved on to Higgs hunting and the discoveries. The group, now bolstered by the addition of Black and Tulika Bose to the physics department faculty, continues the work of understanding the Higgs Boson thoroughly.

The UW–Madison ATLAS group, founded and led by Wu, is an important leader of Higgs physics. The group is fortunate to attract another important leader of ATLAS, Higgs physicist Kyle Cranmer, who recently joined UW–Madison as physics department faculty and the director of the American Family Data Science Institute.

Both CMS and ATLAS announced the discovery, made separately but concurrently, in 2012. When it was first discovered, it conformed to expected energies and momentum of the Higgs, but finding it in this rare decay mode was unexpected, so LHC scientists called it the Higgs-like particle for a while.

a group of very happy scientists pose for a shot, all holding a printout of the same graph
The UW–Madison ATLAS group at CERN at the time of the Higgs discovery all celebrated with printouts of the data confirming 5sigma. | Provided by Sau Lan Wu

Wu recalls her and her group’s involvement in a recent essay published in Physics Today:

At 3:00pm [on June 25, 2012], there was a commotion in the Wisconsin corridor on the ground floor of CERN Building 32. My graduate student Haichen Wang was saying loudly, ‘Haoshuang is going to announce the Higgs discovery!’ Our first reaction was that it was a joke; thus when we entered Haoshuang’s office, we all had smiles on our faces. Those smiles suddenly became much bigger when we got to look at the result of Haoshuang’s combination: It showed the 5.08s close to the Higgs mass of 125GeV/c2. Pretty soon, cheers were ringing down the Wisconsin corridor.

ATLAS had a discovery!”

The Higgs-like announcement from ten years ago has since been confirmed to be the Higgs particle. Several years later, Dasu’s group’s work saw the Higgs decay into the tau, and provided the first evidence of the particle coupling to matter particles, not just to bosons.

a screenshot of a newspaper front page, with an artistically-rendered photo of 5 key scientists involved in the Higgs discovery
Sau Lan Wu and other Higgs scientists were featured on the cover of the New York Times for a story about the chase for the Higgs boson.

On the ten-year anniversary, both ATLAS and CMS collaborations published summaries of their findings to date and future directions. Experimental questions still being addressed include continuing to measure higher-precision interactions between the Higgs and particles it has already been observed to interact with, and detecting previously-unobserved interactions between the Higgs and other particles.

“One big question that immediately comes to my mind is the mass problem. The breakthrough generated by the Higgs discovery was that elementary particles acquire their masses through the Higgs particle,” Wu writes in her Physics Today essay. “A deeper question that needs to be answered is how to explain the values of the individual masses of the elementary particles. In my mind, this mass problem remains a big topic to be explored in the years to come.”

“Another one of the big things that we’re looking for in future data is to understand Higgs potential,” Black says. “Right now, by measuring the mass, we’ve only measured right around its ground state, and that has great implications for the stability of our universe.”

Also on the ten-year anniversary, CERN announced that the LHC — which had been shut down for three years to work on upgrades — was ready to again start delivering proton collisions at an unprecedented energy of 13.6 TeV in its third round of runs. It is expected that the ATLAS and CMS detectors will record more collisions in this upcoming run than in the previous two combined.

The LHC program is scheduled to run through 2040, and the UW–Madison scientists who are part of the CMS and ATLAS collaborations will almost certainly continue to play key roles in future discoveries.

UW–Madison’s current CMS collaboration members include Kevin Black, Tulika Bose, Sridhara Dasu, and Matthew Herndon, and their research groups. Current ATLAS collaboration members include Kyle Cranmer and Sau Lan Wu and their research groups.

Coherent light production found in very low optical density atomic clouds

No atom is an island, and scientists have known for decades that groups of atoms form communities that “talk” to each other. But there is still much to learn about how atoms — particularly energetically excited ones — interact in groups.

In a study published in PRX Quantum, physicists from the University of Wisconsin–Madison observed communication between atoms at lower and lower densities. They found that the atoms influence each other at 100 times lower densities than probed before, exhibiting slow decay rates and emitting coherent light.

“It seems that (low-density) groups of excited atoms spontaneously organize to then produce light that is coherent,” says David Gold, a postdoctoral fellow in Deniz Yavuz’s group and lead author of the study. “These findings are pretty interesting from a basic science standpoint, and in terms of quantum computing, the takeaway is that even with very low numbers of atoms, you can see significant amounts of (these effects).”

A well-established property of atoms is found in electron excitation: when a specific wavelength of light hits an atom of a specific element, an electron is excited to a higher orbital level. As that electron decays back to its initial state, a photon of a specific wavelength is emitted. A single atom has a characteristic decay rate for that process. When groups of atoms are studied, their interactions are observed: the initial decay rate is very fast, or superradiant, then transitions to a slower, or subradiant, rate.

A schematic of the experimental setup. (Top) the overall apparatus used. (A) shows the setup for the first part of the experiment, where the researchers were measuring decay rates in lower and lower density clouds. (B) shows the setup for the second part of the paper, with the addition of an interferometer

Though well-established in dense clouds, this group-talk has never been studied in less dense clouds of atoms, which could have impacts on applications such as quantum computing.

In their first set of experiments, Gold and colleagues asked what the decay rate of lower-density clouds looked like. They supercooled the atoms in a cloud, hit them with an excitation laser, and recorded the decay rates as an intensity of emitted light over time. They observed the characteristic subradiance. In this case, they did not always see superradiance, likely due to the reduced number of atoms available to measure.

profile picture of David Gold
David Gold

Next, they asked what happened if they let the cloud expand — or decrease in density — for varying periods of time before repeating their experiment. They found that as the cloud become less and less dense, the amount of subradiance decreased, until eventually a density was reached where the atoms stopped behaving like a group and instead displayed single-atom decay rates.

“The most subradiance that we observed was at around a hundred times lower optical density than it had previously been observed before,” Gold says.

Now that the researchers knew that a less dense cloud still decays subradiantly to a point, they asked if the decay was happening in an isolated manner, or if the atoms were really acting as a group. If acting as a group, the emitted light would be coherent, or more laser-like, with some structure between the atoms.

They used the same experimental setup but added an interferometer, where light is split and recombined before the photons are detected. They first set the baseline interference pattern by moving the mirror closer or further away from the splitter — changing the path length of one of the beams — and mapping the interference pattern of the split light waves that were emitted from the same atom.

If there were no relationship between the two atoms and the light they emit, then they would have expected to see no interference pattern. Instead, they saw that for some distance of mirror displacement, the lightwaves did interfere, indicating that different atoms being measured were nonetheless producing coherent light.

“I think this is the more exciting thing we found: that the light that’s being emitted is coherent and it has more of the properties of a laser than you would expect,” Gold says. “The atoms are influenced by each other and not in a way we would have expected.”

Aside from the interesting physics seen in the study, Gold says the work is also applicable to quantum computing, particularly as those computers grow bigger in the future.

“Even if everything in a quantum computer is running perfectly and the system was completely isolated, there’s still this inherent thing of, well, the atoms just might decay down from [the computational] state,” Gold says.

This work was supported by National Science Foundation (NSF) Grant No. 2016136 for the QLCI center Hybrid Quantum Architectures and Networks.

Physics technology shines at Summerfest Tech

profile photo of Kieran Furlong
Kieran Furlong

Six top technologies in development at the University of Wisconsin-Madison and other UW System campuses headlined WARF Innovation Day at Summerfest Tech June 29. Wednesday’s event at BMO Tower in Milwaukee drew dozens of in-person and virtual investors who heard seven-minute pitch presentations on high-tech innovations ranging from fusion power to bridge safety monitoring.

“This forum was an exceptional opportunity for investors, media and the public to interface with top University of Wisconsin ideas,” said Erik Iverson, CEO of WARF. “It is this exchange of passion and expertise that forwards the state’s innovation ecosystem.”

One of the presenters included Kieran Furlong, an Honorary Fellow with the College of Letters & Science and CEO of Realta Fusion. Furlong is also the Technology-to-Market (T2M) Advisor to the WHAM project, a fusion energy project led by physics professor Cary Forest.

Furlong’s presentation, titled “Breakthrough Physics for Clean Energy Generation,” had this summary:

The Wisconsin High-field Axisymmetric Mirror (WHAM) project is leveraging major advances in superconducting magnets and plasma heating to pursue commercially viable nuclear fusion power. Fusion is how energy is generated in the sun, yet it has been tremendously challenging to harness on Earth. This project seeks to pave the way to a comparatively low-cost fusion device that can be a net energy generator.

ACCESS THE PITCH DECK.

Read the original article by WARF

Sign up to watch the video on the Summerfest Tech virtual platform.

Brian Rebel promoted to full professor

profile photo of Brian Rebel
Brian Rebel

The Department of Physics is happy to announce that Professor Brian Rebel has been promoted to full professor.

Rebel is a high energy experimentalist whose research focuses on accelerator-based neutrino physics. He joined the department as an associate professor with a joint appointment at Fermilab in 2018, where he is now a senior scientist.

“Professor Rebel is a leader in neutrino science, making major contributions to DUNE experiments and having published recently on four different neutrino collaborations,” says Mark Eriksson, physics department chair. “The department is thrilled about his promotion to full professor.”

Rebel has established himself as a leader in the Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). DUNE is an international experiment for neutrino science and proton decay studies that consists of two neutrino detectors — one near Fermilab in Illinois, and one in South Dakota. The experiment will be installed in LBNF, which will produce the neutrino beam. Rebel is currently the DUNE Anode Plane Assembly (APA) consortium manager, and has previously led Fermilab’s DUNE Science Group.

Since 2005, Rebel has also been involved in Fermilab’s NOvA experiment, which uses precision measurements to investigate the flavor oscillations of neutrinos that are not predicted by the Standard Model. He is currently serving as the co-convener of the analysis group searching for oscillations of active neutrino flavors into a sterile neutrino.

Rebel is currently training three graduate students and two postdoctoral scholars, and expects to graduate his first UW–Madison doctoral student soon. Additionally, he supervised several trainees at Fermilab before he came to UW–Madison. He has enjoyed teaching both introductory physics as well as physics courses for non-majors, and is an effective and engaging teacher.

Congrats, Prof. Rebel, on this well-deserved recognition!

 

 

NASA Sounding Rocket Mission Seeks Source of X-rays Emanating From Inner Galaxy

This post was originally published by NASA

To human eyes, the night sky between the stars appears dark, the void of space. But X-ray telescopes capture a profoundly different view. Like a distant firework show, our images of the X-ray sky reveal a universe blooming with activity. They hint at yet unknown cosmic eruptions coming from somewhere deeper into our galaxy.

To help find the source of these mysterious X-rays, University of Wisconsin—Madison astronomer Dan McCammon and his team are launching the X-ray Quantum Calorimeter or XQC instrument. XQC will make its seventh trip to space aboard a NASA suborbital rocket. This time, XQC will observe a patch of X-ray light with 50 times better energy resolution than ever before, key to revealing its source. The launch window opens at Equatorial Launch Australia’s Arnhem Space Centre in Northern Territory, Australia, on June 26, 2022.

Because Earth’s atmosphere absorbs X-rays, our first views of cosmic X-rays awaited the space age. In June 1962, physicists Bruno Rossi and Ricardo Giacconi launched the first X-ray detector into space. The flight revealed the first sources of X-rays beyond our Sun: Scorpius X-1, a binary star system some 9,000 light-years away, as well as a diffuse glow spread across the sky. The discovery founded the field of X-ray astronomy and later won Giacconi a share of the 2002 Nobel Prize in physics.

a heatmap of the night sky that is mostly blue but has a few blobs of green and warmer colors like orange and red. One of the blobs is circled, indicating the area that McCammon's team is focusing on
This image shows a “map” of the night sky in soft X-ray light in galactic coordinates, with the Sun positioned at the center. The horizontal line across the middle of the image runs along the plane of our disk-shaped galaxy. University of Wisconsin, Madison astronomer Dan McCammon and the XQC team will be observing the bright blob in the center of the image, circled with a dotted line. This is the southern part of a roughly circular blob around the center of the galaxy, cut in half by cold absorbing gas in the plane of the galaxy.
Credits: Snowden et al., 1997

Scientists have now mapped the X-ray sky in ever-finer detail with the help of other NASA X-ray missions. Still, there are several bright patches whose sources are unknown. For the upcoming flight, McCammon and his team will target a patch of X-ray light only partly visible from the Northern Hemisphere.

“It covers a big part of the galaxy, but we needed to be in the Southern Hemisphere to see that part of the sky,” McCammon said. “We’ve been waiting a long time for this expedition to Australia.”

Scientists believe the X-ray patch comes from diffuse, hot gas heated by supernovae, the brilliant eruptions of dying stars. The XQC mission is investigating two possible sources, illustrated in the graphic below.

One possibility is that the X-rays come from gas heated by “Type Ia” supernovae, the death throes of massive stars that live tens to hundreds of millions of years. The inner part of our galaxy has a high enough concentration of this type of supernova to heat the X-ray patch McCammon is investigating.

The other possible source is “Type II” supernovae. The stars behind Type II supernova are even more massive, burn brighter and hotter, and live just a few million years before going supernova. They occur in active star-forming regions, like those in one of our galaxy’s inner spiral arms.

To distinguish these possibilities, XQC will analyze the X-ray light, looking for traces of oxygen and iron. More oxygen points to Type II supernovae, while less oxygen suggests Type 1a supernovae. The physics behind it is complex but ultimately stems from how long the stars burned before erupting. The smaller stars behind Type 1a supernovae burn for longer, leaving less oxygen behind than Type II supernovae.

Of course, the flight is likely to capture much more information as well. “This is an exploration with a new capability – we want to see what we can see,” McCammon said. “Every time we look at the X-ray sky with a new capability, it turns out to be more complicated that we supposed.”

After the flight, the team plans to recover the instrument. It will retire to Oak Ridge National Labs in Tennessee where it will aid in laboratory experiments.

This flight will be XQC’s final trip to space, but the very first from the new Arnhem Space Centre rocket range in East Arnhem, Australia. XQC is part of a three-rocket campaign launching from the range in June and July 2022, NASA’s first time launching from Australia since 1995.

Sau Lan Wu honored with named planet

The International Astronomical Union (IAU) has named a minor planet ‘Saulanwu’ after UW–Madison physics professor Sau Lan Wu.

The planet (177770) ‘Saulanwu’ (=2005 JE163) was discovered on May 8, 2005 at Mt Lemmon observatory in southern Arizona by a NASA funded project, the Catalina Sky Survey. More details about the planet can be found from NASA’s JPL website, including a sketch of the planet’s orbit, which is in the asteroid belt between Mars and Jupiter. Minor planet ‘Saulanwu’ is about two kilometers in diameter, and it takes four years to orbit the sun once. This planet is relatively stable, dynamically, and is expected to remain in our cosmos for millions of years to come.

Wu was nominated for this honor by astronomer Gregory J. Leonard from the University of Arizona’s Department of Planetary Sciences.

a certificate announcing that Sau Lan Wu has had a minor planet named after her

Victor Brar, Moritz Münchmeyer funded through latest round of Research Forward

Victor Brar

Sixteen projects — including two from Physics — have been selected for funding in the second round of Research Forward, a program to stimulate innovative and groundbreaking research at UW–Madison that is collaborative, multidisciplinary and potentially transformative.

The winning projects were chosen from 96 proposals submitted by applicants across campus. The Research Forward initiative is sponsored by the Office of the Vice Chancellor for Research and Graduate Education and is supported by the Wisconsin Alumni Research Foundation, which provides funding for one or two years, depending on the needs and scope of the project. Some of the projects that have been funded have the potential to fundamentally transform a field of study.

profile photo of Moritz Muenchmeyer
Moritz Münchmeyer

The Research Forward initiative is sponsored by the Office of the Vice Chancellor for Research and Graduate Education and is supported by the Wisconsin Alumni Research Foundation, which provides funding for one or two years, depending on the needs and scope of the project. Some of the projects that have been funded have the potential to fundamentally transform a field of study.

“Research Forward encourages collaboration among campus PIs, enhances PhD student and postdoc training, and strengthens our external grant funding requests,” says Steve Ackerman, vice chancellor for research and graduate education. “The projects we selected are truly forward-looking and use innovative approaches and tools such as state-of-the-art machine learning methods, 3D printing techniques and geostationary satellites.”

The Physics projects are:

Keith Bechtol selected to Department of Energy Early Career Research Program

profile photo of keith bechtol
Keith Bechtol

The Department of Energy’s (DOE) Office of Science announced the selection of 83 scientists — including University of Wisconsin–Madison physics professor Keith Bechtol — to the Early Career Research Program.

The funding will allow Bechtol and his group to first work on commissioning the Vera C. Rubin Observatory in preparation for the Legacy Survey of Space and Time (LSST), then they will transition to data collection and analysis for their cosmology research.

“We are anticipating that LSST will catalog more stars, more galaxies and more solar system objects during its first year of operations than all previous telescopes combined,” Bechtol says.

Rubin Observatory’s telescope will have an eight-meter diameter mirror and a ten square degree field of view. The 3.2-billion-pixel camera will collect an image every 30 seconds. All told, LSST will amass around 10 terabytes of data every night.

Bechtol has leadership roles for building and commissioning the observatory as well as with the Dark Energy Science Collaboration (DESC), the international science collaboration that will make high accuracy measurements of fundamental cosmological parameters using LSST data. At least seven other collaborations have formed around different science areas to analyze the data. Rubin Observatory is preparing to serve the LSST data to many thousands of scientists in the US, Chile, and at international partner institutions around the world.

“DESC will use LSST data to address several outstanding physics questions, such as: Why are the distances between galaxies growing at an accelerating rate? What is the fundamental nature of dark matter? What is the absolute mass scale of neutrinos? How did the universe begin and what were the initial conditions?” Bechtol says.

Bechtol will receive around $150,000 per year for five years to cover summer salary and research expenses. The research expenses will be used mostly to cover the analyses after the data collection starts. However, because there cannot be useful data without the initial commissioning and science validation steps — and because the Observatory is still a couple of years away from first light — the DOE award is also supporting Bechtol’s efforts during the commissioning phase to accelerate the realization of DESC science goals.

“For me, the most important thing about this award is that it will provide more opportunity for students and postdocs to directly contribute to this ambitious experiment. Turning on a new experiment of this scale and complexity doesn’t happen every day,” Bechtol says. “For my research group to be able to participate firsthand in the commissioning, seeing first light, and contributing to the first cosmology results is so valuable from a career development perspective. We are training the next generation of experiment builders.”

The DOE early career program is open to untenured, tenure-track professors at a U.S. academic institution (or a full-time employee at a DOE national laboratory) who received a PhD within the past 10 years. Research topics are required to fall within one of the DOE Office of Science’s eight major program offices, including high energy physics, the program through which Bechtol’s award was made.