Mark Saffman part of team awarded in latest round of Research Forward funding

This story was originally published by the OVCR

The Office of the Vice Chancellor for Research (OVCR) hosts the Research Forward initiative to stimulate and support highly innovative and groundbreaking research at the University of Wisconsin–Madison. The initiative is supported by the Wisconsin Alumni Research Foundation (WARF) and will provide funding for 1–2 years, depending on the needs and scope of the project.

Research Forward seeks to support collaborative, multidisciplinary, multi-investigator research projects that are high-risk, high-impact, and transformative. It seeks to fund research projects that have the potential to fundamentally transform a field of study as well as projects that require significant development prior to the submission of applications for external funding. Collaborative research proposals are welcome from within any of the four divisions (Arts & Humanities, Biological Sciences, Physical Sciences, Social Sciences), as are cross-divisional collaborations.

Physics professor Mark Saffman is part of a team awarded funding in Round 4 of the Research Forward competition for their project:

Quanta sensing for next generation quantum computing

Future quantum computers could open new scientific and engineering frontiers, impacting existential challenges like climate change. However, quantum information is delicate; it leaks with time and is prone to significant errors. These errors are exacerbated by imperfect reading and writing of quantum bits (qubits). These challenges fundamentally limit our ability to run quantum programs, and could hold back this powerful technology. Fast and accurate qubit readout, therefore, is essential for unlocking the quantum advantage. Current quantum computers use conventional cameras for reading qubits, which are inherently slow and noisy.

This research project will use quanta (single-photon) sensors for fast and accurate qubit readout. Quanta sensors detect individual photons scattered from qubits, thus enabling sensing qubits at 2-3 orders of magnitude higher speeds (few microseconds from ~10 milliseconds), thereby transforming the capabilities (speed, accuracy) of future quantum computers, and for the first time, paving the way for scalable and practical quantum computing.

Principal investigator: Mohit Gupta, associate professor of computer sciences

Co-PIs: Mark Saffman, professor of physics; Swamit Tannu, assistant professor of computer sciences; Andreas Velten, associate professor of biostatistics and medical informatics, electrical and computer engineering

Entangled neutrinos may lead to heavier element formation

Elements are the building blocks of every chemical in the universe, but how and where the different elements formed is not entirely understood. A new paper in The Astrophysical Journal by University of Wisconsin–Madison physics professor Baha Balantekin and colleagues with the Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS) Physics Frontier Center, shows how entangled neutrinos could be required for the formation of elements above approximately atomic number 140 via neutron capture in an intermediate-rate process, or i-process.

Profile photo of Baha Balantekin
Baha Balantekin

Why it’s important

“Where the chemical elements are made is not clear, and we do not know all the possible ways they can be made,” Balantekin says. “We believe that some are made in supernovae explosions or neutron star mergers, and many of these objects are governed by the laws of quantum mechanics, so then you can use the stars to explore aspects of quantum mechanics.”

What is already known?

  • Immediately after the Big Bang, lighter elements like hydrogen and helium were abundant. Heavier elements, up to iron (atomic number 26) continued to form through nuclear fusion in the centers of hot stars.
  • Above iron, fusion is no longer energetically favorable, and nuclear synthesis occurs via neutron capture, where neutrons glom onto atomic nuclei. At high enough concentrations, neutrons can convert into protons, increasing the atomic number of the element by one.
  • This conversion is dependent on neutrinos and antineutrinos. Neutron capture has been found to occur slowly (s-process, over years) and rapidly (r-process, within minutes); an intermediate timescale, or i-process has been proposed but little evidence exists to support it. Rapid or intermediate neutron capture can only take place in catastrophic events where a huge amount of energy is released, such as supernova collapse.
  • “When a supernova collapse occurs, you start with a big star, which is gravitationally bound, and that binding has energy,” Balantekin says. “When it collapses, that energy has to be released, and it turns out that energy is released in neutrinos.”
  • The laws of quantum mechanics state that those neutrinos can become entangled because they interact in the collapsing supernova. Entanglement is when any two or more particles interacted and then “remember” the others, no matter how far apart they might be.

A quick summary of the research

  • “One question we can ask is if these neutrinos are entangled with each other or not,” Balantekin says. “This paper shows that if the neutrinos are entangled, then there is an enhanced new process of element production, the i-process.”
a plot of mass number A (atomic number) on the x-axis and abundance as a log scale on the y-axis. a purple line shows the i-process abundance, black line shows r-process, and grey line shows s-process. Above atomic number 140 or so, there is a visible enhancement of the purple line over the other two lines (below 140 the black and grey lines are much higher abundance values than the purple line)
The abundance pattern based on calculations in this paper (ν i-process pattern; purple line), compared with the solar system s-process (gray line) and r-process (black line) abundance data (Sneden et al. 2008). The ν i abundance for A = 143 is scaled to the solar r-process data for pattern comparison. | Source: The Astrophysical Journal

The experimental and simulated evidence

  • The researchers used two known facts to set up their calculations: well-established rates of neutron capture, and catalogs of the atomic spectra of stars, which astronomers have collected over decades to identify the abundance of different elements. They also knew that a supernova collapse produces on the order of 10^58 neutrinos, a number that is far too large to use in any standard calculations.
  • Instead, they made simulations of up to eight neutrinos and calculated the abundance of elements that would be created via neutron capture if the neutrinos were entangled, or were not entangled.
  • “We have a system of, say, three neutrinos and three antineutrinos together in a region where there are protons and neutrons and see if that changes anything about element formation,” Balantekin says. “We calculate the abundances of elements that are produced in the star, and you see that the entangled or not entangled cases give you different abundances.”
  • The simulations showed that elements with atomic number greater than 140 are likely to be enhanced by i-process neutron capture — but only if the neutrinos are entangled.

Caveats and future work

  • Balantekin points out that these simulations are just “hints” based on astronomical observations. Astrophysics research requires using the cosmos as a lab, and it is difficult to conduct true experimental tests on earth.
  • “There’s something called the standard model of particle physics, which determines the interaction of particles. The neutrino-neutrino interaction is one aspect of the standard model which has not been tested in the lab, it can only be tested in astrophysical extremes,” Balantekin says. “But other aspects of the standard model have been tested in the lab, so one believes that it should all work.”
  • The researchers are currently using more astrophysical data of element abundance in extreme environments to see if those abundances continue to be explained by entangled neutrinos.

This research is supported in part by the National Science Foundation grants Nos. PHY-1630782 and PHY-2020275 (Network for Neutrinos, Nuclear Astrophysics and Symmetries). Balantekin is supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0019465 and in part by the National Science Foundation Grant PHY-2108339 at the University of Wisconsin-Madison. 

The paper’s co-authors include Michael Cervia, Amol Patwardhan, Rebecca Surman, and Xilu Wang, all current or former members of N3AS.

Four students named Hilldale Fellows

Four physics majors have earned 2024 Hilldale Fellowships. They are:

  • Erica Magee, Mathematics and Physics major, working with Martin Zanni (Chemistry)
  • Quinn Meece, Astronomy – Physics and Physics major, working with Mark Saffman (Physics)
  • Elias Mettner, Physics major, working with Abdollah Mohammadi (Physics)
  • Leah Napiwocki, Astronomy – Physics and Physics major, working with Marsha Wolf (Astronomy)

The Hilldale Undergraduate/Faculty Research Fellowship provides research training and support to undergraduates at UW–Madison. Students have the opportunity to undertake their own research project in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97 – 100 Hilldale awards are available each year.

The student researcher receives a $3,000 stipend (purpose unrestricted) and faculty/staff research advisor receives a $1,000 stipend to help offset research costs (e.g., supplies, books for the research, student travel related to the project).

MSPQC’s Preetham Tikkireddi wins second place at QED-C student poster presentation

MSPQC student Preetham Tikkireddi won second place for his poster, “Understanding security side channel attacks on multi-tenancy quantum computers,” at the plenary meeting of the Quantum Economic Development Consortium (QED-C), held March 20-21 in Evanston, IL.

Students who attended the plenary first learned best practices for presenting their research to a non-science audience, a useful skill for a cutting-edge field where investors, hiring managers, and policy makers do not necessarily have a quantum background. Then, the students implemented those skills at the judged poster session.

“[The poster session attendees] are really smart people, but they’re not quantum people, so you set them up for asking questions, and based on the questions that they’re asking, you determine how deep you want to go into your research.” Tikkireddi says. “It was a very different kind of experience, rather than just a plain research presentation to a professor or people who already know the field.”

a group of people in business attire stand and pose in a line, they all have nametag lanyards around their necks
A total of 17 students presented posters at the first-ever QED-C student program and poster competition. UW–Madison MSPQC student Preetham Tikkireddi (right) was one of three graduate students to win the top honor at the competition. | Photo credit: QED-C

Tikkireddi’s research, conducted with computer sciences professor Swamit Tannu, looked at the potential for exploiting crosstalk when two users access the same quantum computer at the same time.

“Right now, quantum computers are really expensive, and the way we access them is by sending jobs to these quantum providers like IBM or IonQ,” Tikkireddi explains. “But the queues are really long. If you’re lucky, you can get the results back the next day.”

Quantum computing capacity is growing rapidly in the form of more and more qubits, and most jobs submitted to these long queues do not need to use all the qubits. Tikkireddi and Tannu thought that one way to increase throughput would be to allow users to share the same quantum computer, each using a subset of the qubits. But quantum computations rely on qubit entanglement, where physically separate qubits interact and share information. It was unclear if sharing a quantum computer opens users to security risks.

In his work, Tikkireddi asked if he could count C-NOTs — the gate that is used to create this entanglement — of another user. He entangled two qubits, then asked if two other qubits could “hear” what the first two were doing.

“We were able to use that to figure out how many C-NOTs the other guy is doing. That’s step one of an attack,” Tikkireddi says. “Your algorithm is your intellectual property, so you don’t want people to steal it. It’s a security problem.”

With this initial analysis identifying potential security risks amongst shared quantum computer use, Tikkireddi says providers should currently not let users share computing time, and that future research should focus on ways to mitigate these crosstalk attacks in an effort to balance efficiency with safeguarding intellectual property.

Tikkireddi credits Tannu for helping to guide his poster away from a traditional research poster and toward one more accessible to a non-science audience. He also appreciates the support from MSQPC associate director Katerina Moloni for encouraging and preparing students to take advantage of these training opportunities.

“It was a really good networking opportunity, especially for me, who is looking for a job right now,” Tikkireddi says. “I would highly recommend students to go to these kinds of events because we get a chance to interact with people in the industry.”

WIPAC researchers set new limits on the origins of the Galactic neutrino emission detected by IceCube

Neutrinos are tiny, nearly massless particles that travel cosmological distances unhindered, acting as messengers that carry information about their sources. Since the recent detection of high-energy neutrino emission from the Milky Way, the IceCube Neutrino Observatory at the South Pole is working to pinpoint the exact nature of the Galactic emission contributing to the astrophysical [...]

Read the full article at: https://wipac.wisc.edu/wipac-researchers-set-new-limits-on-the-origins-of-the-galactic-neutrino-emission-detected-by-icecube/

Welcome, Professor Tiancheng Song!

Photo of Tiancheng Song
Tiancheng Song

Tiancheng Song, a condensed matter experimentalist, joined the UW–Madison Physics Department as an assistant professor on May 20. His research interest lies in two-dimensional (2D) quantum materials with a focus on 2D magnetism, 2D superconductivity and 2D topology. He joins us from Princeton University where he was a Dicke Fellow and won the Lee Osheroff Richardson Science Prize. He completed his PhD at the University of Washington and his bachelor’s degree from University of Science and Technology in China. He is originally from Tianjin, China, the son of two theoretical physicists.

Please give an overview of your research.

I work on experimental condensed matter physics and am especially interested in a new family of materials called two-dimensional materials, which resemble “Quantum LEGOs” at the atomic scale. These 2D materials can be exfoliated down to the monolayer limit just using Scotch tape, and each monolayer can act like a LEGO piece. This provides us with a full LEGO set of quantum materials in two dimensions, covering a broad spectrum of emergent quantum phenomena. Within this new material platform of condensed matter physics, I’m particularly interested in three topics: magnetism, superconductivity and topology. With the new tuning knobs uniquely enabled in this new material system, we aim to study these three topics in two dimensions using those LEGOs. There will be a lot of fun because we can use them like building blocks, stack them together like LEGO toys, and uncover new physics emerging from the toys we create!

What are the first one or two research projects you’ll work on when your group is running here?

Overall, we plan to discover new 2D quantum materials, develop new measurement techniques and explore new physics in this emergent platform. We aim to combine state-of-the-art nanofabrication of 2D materials with various measurement techniques including magneto-optics, quantum transport, thermoelectrics, optoelectronics, optical spectroscopy and microscopy. Our research will explore three directions: 2D magnetism, 2D superconductivity and 2D topology.

What attracted you to Madison and the University?

The University of Wisconsin–Madison is a top public university located in a beautiful city. The Department of Physics is renowned for its exceptional research in many areas of physics. My partner also works at UW–Madison.

What is your favorite element and/or elementary particle?

I usually say Chromium or Tellurium, but this time I would say Technetium (symbol Tc and atomic number 43). This is because my name is Tiancheng, and when I was a kid, my parents called me TC just for fun. Since studying abroad, I have found my name sometimes difficult to pronounce and remember for others, because it is a bit long and complicated. So, I started using this nickname again, and I’m happy to be called TC!

What hobbies and interests do you have?

I enjoy many sports, such as badminton, tennis and swimming. For those other sports that I am not very skilled at, I enjoy watching rather than playing.

Ke Fang named inaugural recipient of the Bernice Durand Faculty Fellowship

The Department of Physics is pleased to announce that Ke Fang, assistant professor of physics and WIPAC investigator, has received the inaugural Bernice Durand Faculty Fellowship. This fellowship, given in honor of late Professor Emerit of Physics Bernice Durand, recognizes Fang’s major contributions to the analysis of data from the NASA Fermi satellite, the High Altitude Water Cherenkov (HAWC) telescope and IceCube, and for fundamental theoretical insights in their multimessenger context. Fang is a Sloan Fellow, has been awarded an NSF CAREER award, and is the spokesperson for the HAWC experiment.

a man and a woman smile while both holding a framed award certificate
Department Chair and professor Mark Eriksson (left) presents assistant professor Ke Fang with the Bernice Durand Faculty Fellowship at the department awards banquet in May 2024.

Durand was one of the first two women professors in the UW–Madison Department of Physics. While at UW–Madison, Durand was a theoretical physicist who specialized in particle theory and mathematical physics. Her research was on symmetry relations in algebra and physics, plus the phenomenology of high-energy interactions at large particle accelerators.

As the first Associate Vice Chancellor for Diversity & Climate, Professor Durand provided leadership to ensure that faculty, staff, and student diversity issues including race, ethnicity, gender, sexual preference, and classroom and general campus workplace climate issues be addressed, and that search committees for non-classified staff be trained in broadening the pool of applicants and eliminating implicit bias. Durand co-directed a grant from the Alfred P. Sloan Foundation to the UW System designed to create more equity, flexibility and career options for faculty and academic staff. She was also a member of the leadership team of the Women in Science and Engineering Leadership Institute sponsored by the National Science Foundation to increase the participation and status of women in science.

A recipient of the Chancellor’s Award for Outstanding Teaching, Professor Durand taught courses at all levels, from modern physics for non-scientists (“Physics for Poets”) to a specialized course she developed for advanced graduate students in the use of topology and algebra in quantum field theory. In the mid 1990s, she used technological and pedagogical techniques in her teaching, such as broadcasting her modern physics for non-scientists course on public television with web-based coursework, and pioneering one of two early versions of MOOCs (massive open online courses) on campus.

Durand passed away in 2022.

The Bernice Durand Faculty Fellowship was conceived by our Board of Visitors, who spearheaded the ultimately-successful fundraising effort, with support from Professor Emerit Randy Durand for this fellowship honoring his wife.

Cristian Vega awarded Callen Award for Excellence in Theoretical Plasma Physics Research

profile picture of Cristian Vega
Cristian Vega

Congrats to (now) Dr. Cristian Vega who won the Callen Award for Excellence in Theoretical Plasma Physics Research! Vega won the award on April 29, just days before defending his thesis on May 3.

The Callen Award is awarded annually to a UW–Madison plasma physics graduate student for achievements in plasma theory. Now-retired Professor Emeritus Jim Callen was a long-time faculty member in the Nuclear Engineering and Engineering Physics department. Callen was also an affiliate faculty member of the Physics department.