Research, teaching and outreach in Physics at UW–Madison
Awards and Honors
Wasikul Islam honored with UW Postdoc Association Excellence in Service Award
Posted on
Wasikul Islam, a postdoc in Sau Lan Wu’s group, was recognized by the UW–Madison Postdoc Association with an Excellence in Service Award. He was nominated for his science outreach activities, promotion of basic sciences, volunteering and mentorship to undergrad Physics students through various non-profit organizations including the American Physical Society.
The Postdoc Excellence Awards recognize current postdocs on the UW-Madison campus that contribute their time, knowledge, energy, and enthusiasm to mentoring, teaching, and service. They were established to encourage and reward excellence, innovation, and effectiveness in the mentoring, teaching, and service of UW-Madison postdocs. The 2023 winners were honored at the Celebration of Postdoc Excellence on May 19.
Ke Fang earns NSF CAREER award
Posted on
Congrats to Ke Fang, assistant professor of physics, WIPAC faculty member, and HAWC spokesperson, on earning an NSF CAREER award! CAREER awards are NSF’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.
Fang’s award is sponsored by the NSF Windows on the Universe: Multimessenger Astrophysics program. In multimessenger astrophysics, scientists search for multiple high energy signals to identify their sources and learn more about the makeup of our universe. WIPAC hosts both the IceCube neutrino telescope and the HAWC gamma ray telescope, and Fang says she is excited to have access to high-quality data from both. In her NSF proposal, she plans to use that data in two ways.
“One is evolving novel data analysis techniques to study the problems that remain outstanding, such as the source of high-energy neutrinos,” Fang says. “The second part is once we have these data analysis results, then we’ll use numerical simulations to understand our observations.”
In addition to an innovative research component, NSF proposals require that the research has broader societal impacts, such as working toward greater inclusion in STEM or increasing public understanding of science. Once again, Fang finds herself well-positioned at WIPAC, where the outreach team has developed Master Classes, a one-day event where high school students come to WIPAC, spend time with scientists, and learn about topics not typically covered in high school physics class. Currently, the students learn about IceCube’s instrumentation and how to analyze the complex detector data.
“The course is already well designed, but from my perspective, I use a lot of numerical simulation in my research, so one thing I proposed to do is that I would design a module that would incorporate some of these modern numerical study techniques into the master class,” Fang says. “The students will now learn how to study physics using supercomputers, using numerical simulations.”
Dan McCammon earns L&S Distinguished Academic Advising Achievement Award
Posted on
The College of Letters & Science announced this week that Prof. Dan McCammon has been awarded a 2022-23 Distinguished Academic Advising Achievement Award, the highest advising honor the College bestows.
Persons honored with an L&S Academic Advisingaward are exceptional advisors. Recipients have demonstrated exemplary performance both in terms of their positive impact on students and through distinctive contributions to their department, unit, and/or the College of Letters & Science.
“Dan is widely known in the physics department for the care and concern he shows to all our students,” says Prof. Thad Walker, chair of the department’s Faculty Recognition committee. “Literally thousands of students have benefitted from his thoughtful, knowledgeable, and non-judgmental advice.”
McCammon joined the Physics faculty in 1980 and has served in a formal or informal advising role ever since. He works tirelessly on behalf of all students in a role which most of them are likely unaware of — as their representative and defender within the physics department.
Katiya Fosdick was one of those students. She was an astronomy-physics major who had been assigned an academic advisor in the astronomy department, but frequently turned to McCammon for discussions about the major, course selection, and issues with workload in courses.
“Dan fights and advocates to do right by his undergraduate constituents,” Fosdick says. “He is motivated by a sense of responsibility and service to students and acts on it.”
McCammon has served as a research advisor for over 220 undergraduate students, both physics and non-physics majors, in addition to his academic advising role. He has served as the faculty mentor to the Undergraduate Physics Club for three decades, worked with the L&S Honors program to increase the honors section offerings in physics courses, and worked closely with the undergraduate course committees to ensure that physics course requirements are appropriate for all students regardless of their graduate school plans.
“Dan has served as an exceptional advisor to thousands of students over decades of service, and his unique understanding and compassionate mentoring has positively impacted students’ lives in myriad ways,” Walker says. “It is a pleasure that the College is acknowledging his outstanding work over so many years with this Distinguished Achievement Advising Award.”
Justin Vandenbroucke receives Vilas Associates award
UW–Madison physics professor Justin Vandenbroucke was selected as one of 23 awardees of the Vilas Associates Competition. The announcement was made recently by the Office of the Vice Chancellor for Research and Graduate Education.
The competition recognizes “new and ongoing research of the highest quality and significance,” and is open to tenure-track assistant professors and tenured faculty within 20 years of their tenure date. Recipients are chosen based on their research proposals, with winners receiving up to two-ninths of research salary support for the summers of 2023 and 2024, in addition to a $12,500 flexible research fund each of the fiscal years.
“This award will enable my group and me to build on our recent work by branching out in new directions,” says Vandenbroucke. “I’m grateful for the support we receive from the university, the physics department, and WIPAC.”
Vandenbroucke’s work at WIPAC includes research in neutrino astronomy, gamma-ray astronomy, and cosmic rays. Vandenbroucke leads the Distributed Electronic Cosmic-Ray Observatory (DECO), a citizen science project that allows users around the world to detect cosmic rays and other energetic particles with their cell phones and tablets. Vandenbroucke is a member of the IceCube Collaboration and the Cherenkov Telescope Array consortium and an affiliate member of the Fermi LAT collaboration.
The award will be used to support research in multimessenger astrophysics using IceCube and the IceCube Upgrade, now underway, in combination with gravitational wave and gamma-ray observations to discover and study cosmic particle accelerators.
The award is funded by the William F. Vilas Trust Estate.
Alex Levchenko earns L&S Distinguished Honors Faculty Award
Each year, the L&S Honors Program solicits student nominations of faculty members or instructional academic staff who have had a special impact as instructors of Honors courses, as supervisors of Honors theses, or as teachers and mentors of Honors students. The Faculty Honors Committee reviews these nominations and votes to confer Distinguished Honors Faculty status on the strongest nominees for these awards each spring.
Excerpt from student nomination:
As a classroom teacher, Prof. Levchenko is exceptional at explaining difficult concepts. He is really good at challenging students with homework problems, which are very involved and demanding but [helps them] understand materials and develop invaluable skills as a physicist. […] On top of being extremely competent in his research, he cares deeply about his students on a personal level, making sure students are doing ok in general in life and opening many doors for professional activities. As an aspiring theoretical physicist, Prof. Levchenko is someone I would not only like to work with but also want to be like when I reach that stage.
Awardees will be recognized at an L&S Honors Kick-off event this fall.
Physics students earn 2023 NSF graduate fellowships
The Graduate Research Fellowship Program (GRFP) supports high-potential scientists and engineers in the early stages of their careers. Each year, more than 12,000 applicants compete for ~2,000 fellowship awards. NSF GRFP awards are highly sought and competitive. The fellowship is awarded to individuals in the early stages of their graduate study, who intend to pursue research-based graduate studies in science, technology, engineering, and mathematics (STEM).
The program provides awardees with three years of financial support consisting of a $37,000 annual stipend and a $12,000 education allowance. UW–Madison contributes toward fringe benefits.
Justin Marquez and Sam Kramer named L&S Teaching Mentors
Posted on
Congrats to physics PhD students Justin Marquez and Sam Kramer on being named 2023-24 L&S Teaching Mentors!
The L&S TA Training & Support Team is responsible for welcoming and training hundreds of new TAs each year. Teaching Mentors are the heart of this crucial undertaking: they serve as facilitators at the annual L&S Fall TA Training event and provide mentorship throughout the semester. Those selected to be Teaching Mentors have not only a proven track record of excellence as educators, but also a strong desire to share their experience and mentor new TAs navigating their first year.
Twenty-one outstanding graduate students — including physics PhD student Soren Ormseth — have been selected as recipients of the 2022-23 UW–Madison Campus-Wide Teaching Assistant Awards, recognizing their excellence in teaching. Ormseth earned a Dorothy Powelson Teaching Assistant Award.
UW–Madison employs over 2,300 teaching assistants (TAs) across a wide range of disciplines. Their contributions to the classroom, lab, and field are essential to the university’s educational mission. To recognize the excellence of TAs across campus, the Graduate School, the College of Letters & Science (L&S), and the Morgridge Center sponsor these annual awards.
Ormseth is a graduate student in the Department of Physics specializing in detector physics. He has taught intermediate physics lab and intermediate electronics lab.
“The best teachers hone their communication skills to make subject material and lessons interesting, relevant, well organized, and right at that difficulty-sweet-spot. At the end of the day though, every student has their own unique way of looking at the world and engaging with a particular topic,” Ormseth said. “When it comes time to deliver a lecture, write a textbook, or create a presentation, a teacher needs to work on those communication skills. But when it comes time to engage with an individual student, the best thing that a teacher can do is be approachable, flexible, and willing to listen with the intent to understand the student’s perspective. Mastering these two teaching modes is a lifelong journey which never stops!”
Clint Sprott makes 2022 list of highly cited researchers
Posted on
Sixteen UW–Madison researchers — including emeritus professor of physics Clint Sprott — were recently recognized on the Institute for Scientific Information™ list of Highly Cited Researchers 2022. The list identifies scientists and social scientists who have demonstrated significant influence through publication of multiple highly-cited papers during the last decade.
Department of Energy grant to train students at the interface of high energy physics and computer science
Posted on
To truly understand our physical world, scientists look to the very small, subatomic particles that make up everything. Particle physics generally falls under the discipline of high energy physics (HEP), where higher and higher energy collisions — tens of teraelectronvolts, or about ten trillion times the energy of visible light — lead to the detection and characterization of particles and how they interact.
These collisions also lead to the accumulation of inordinate amounts of data, and HEP is increasingly becoming a field where researchers must be experts in both particle physics and advanced computing technologies. HEP graduate students, however, rarely enter graduate school with backgrounds in both fields.
Physicists from UW–Madison, Princeton University, and the University of Massachusetts-Amherst are looking to address the science goals of the HEP experiments by training the next generation of software and computing experts with a 5-year, ~$4 million grant from the U.S. Department of Energy (DOE) Office of Science, known as Training to Advance Computational High Energy Physics in the Exascale Era, or TAC-HEP.
“The exascale era is upon us in HEP and the complexity, computational needs and data volumes of current and future HEP experiments will increase dramatically over the next few years. A paradigm shift in software and computing is needed to tackle the data onslaught,” says Tulika Bose, a physics professor at UW–Madison and TAC-HEP principal investigator. “TAC-HEP will help train a new generation of software and computing experts who can take on this challenge head-on and help maximize the physics reach of the experiments.”
In total, DOE announced $10 million in funding today for three projects providing classroom training and research opportunities in computational high energy physics to train the next generation of computational scientists and engineers needed to deliver scientific discoveries.
At UW–Madison, TAC-HEP will annually fund four-to-six two-year training positions for graduate students working on a computational HEP research project with Bose or physics professors Keith Bechtol, Kevin Black, Kyle Cranmer, Sridhara Dasu, or Brian Rebel. Their research must broadly fit into the categories of high-performance software and algorithms, collaborative software infrastructure, or hardware-software co-design.
Bose’s research group, for example, focuses on proton-proton collisions in the Compact Muon Solenoid (CMS) at the CERN Large Hadron Collider (LHC). The high luminosity run of the LHC, starting in 2029, will bring unprecedented physics opportunities — and computing challenges, challenges that TAC-HEP graduate students will tackle firsthand.
“The annual data volume will increase by 30 times while the event reconstruction time will increase by nearly 25 times, requiring modernization of the software and computing infrastructure to handle the demands of the experiments,” Bose says. “Novel algorithms using modern hardware and accelerators, such as Graphics Processing Units, or GPUs, will need to be exploited together with a transformation of the data analysis process.”
TAC-HEP will incorporate targeted coursework and specialized training modules that will enable the design and development of coherent hardware and software systems, collaborative software infrastructure, and high-performance software and algorithms. Structured R&D projects, undertaken in collaboration with DOE laboratories (Fermilab and Brookhaven National Lab) and integrated within the program, will provide students from all three participating universities with hands-on experience with cutting-edge computational tools, software and technology.
The training program will also include student professional development including oral and written science communication and cohort-building activities. These components are expected to help build a cohort of students with the goal of increasing recruitment and retention of a diverse group of graduate students.
“Future high energy physics discoveries will require large accurate simulations and efficient collaborative software,” said Regina Rameika, DOE Associate Director of Science for High Energy Physics. “These traineeships will educate the scientists and engineers necessary to design, develop, deploy, and maintain the software and computing infrastructure essential for the future of high energy physics.