This post is adapted from one originally published by Fermilab
Fermilab is finalizing a partnership with Diraq and several universities — including the University of Wisconsin–Madison — for the Quandarum project. The project team intends to combine extreme environment electronics and silicon spin qubits to develop a quantum sensor that could profoundly impact the field of high-energy physics.
Researchers at the Department of Energy’s Fermi National Accelerator Laboratory, along with scientists and engineers at Diraq, University of Wisconsin–Madison, University of Chicago and Manchester University, have proposed the development of a quantum sensor made of quantum bits called spin qubits in silicon to probe beyond Standard Model physics.

By placing many spin qubits together on a chip to form a sensor, the researchers seek to enable scientists to tease out even the faintest signals from the cosmos. Such a sensor could potentially be used to detect axions, hypothetical particles that some scientists believe comprises dark matter.
Led by Fermilab, the Quandarum project is one of 25 projects funded for a total of $71 million by the DOE program Quantum Information Science Enabled Discovery. The QuantISED program supports innovative research at national laboratories and universities that applies quantum technologies to use for fundamental science discovery.

“The project is looking at how quantum sensors might be used for high energy physics applications, specifically in axion detection,” says UW–Madison physics professor Matt Otten. “[My partners] know much more about axion detection, I happen to not know about axions, and that’s why we’re a team.”
With this award, researchers plan to develop a novel sensor. To do so, they plan to bring together for the first time two specialized technologies: spin qubits in silicon and cryogenic “skipper” analog-to-digital converter circuits used for the readout of dark matter detectors.
Silicon spin-based quantum sensors can provide a powerful platform for testing theories around dark matter because they can exploit quantum interactions to increase sensitivity and explore the limits of what scientists understand about high-energy physics.
“My group’s part of it is, given these large silicon qubit arrays, we might utilize the fact that they are essentially quantum computers,” Otten says. “We’re going to be studying entanglement enhanced quantum sensing, either through the use of error correcting code or through novel entangled states.”