Deniz Yavuz elected Fellow of the American Physical Society

profile photo of Deniz Yavuz
Deniz Yavuz

Congratulations to Prof. Deniz Yavuz, who was elected a 2025 Fellow of the American Physical Society!

He was elected “for outstanding experimental and theoretical contributions to nanoscale localization of atoms with electromagnetically induced transparency and collective radiation effects in atomic ensembles,” and nominated by the Division of Atomic, Molecular & Optical Physics (DAMOP).

APS Fellowship is a distinct honor signifying recognition by one’s professional peers for outstanding contributions to physics. Each year, no more than one half of one percent of the Society’s membership is recognized by this honor.

See the full list of 2025 honorees at the APS Fellows archive.

Roman Kuzmin earns NSF CAREER Award

profile photo of Roman Kuzmin
Roman Kuzmin

Congrats to Roman Kuzmin, the Dunson Cheng Assistant Professor of Physics, for being selected for an NSF CAREER award. The 5-year award will support Kuzmin and his group’s research on understanding fluxonium qubits and how their properties can be used to simulate the collective behavior of quantum materials.

Superconducting qubits are one promising technology for quantum computing, and the best-studied type is the transmon. Kuzmin’s work will investigate the fluxonium type, which he expects to be an improvement over transmons because they have demonstrated higher coherence, and their ground and first excited state are better separated from other energy levels.

“These properties make fluxonium behave similar to a magnetic moment, or like a magnetic atom, which we can fabricate in the lab and tune its properties,” Kuzmin says. “Things become interesting when interactions are very strong, and you need to involve many-body physics to describe them. We plan to build circuits which recreate the behavior of these complicated systems so that we have better control and can study multiple collective phenomena that appear in materials with magnetic impurities.”

In the lab, this research will be explored by building circuits with fluxonium qubits, capacitors, and inductors, which are further combined into more complicated circuits. The circuits will be used to test theoretical predictions of such behaviors as quantum phase transitions, entanglement scaling, and localization.

In addition to an innovative research component, NSF proposals require that the research has broader societal impacts, such as developing a competitive STEM workforce or increasing public understanding of science. Kuzmin plans to expand his work in the department’s Wonders of Physics program. This past February, he helped build a wave machine (with Steve Narf) to visually demonstrate patterns of interference, and he performed in all eight shows. His group has also participated in TeachQuantum, a summer research program for Wisconsin high school teachers run through HQAN, the NSF-funded Quantum Leap Challenge Institute that UW–Madison is a part of.

“One of the goals of this proposal is to introduce more quantum physics to the annual Wonders of Physics show; another is to provide hands-on training for high school teachers in my lab,” Kuzmin says. “Together, these activities will increase K-12 students’ engagement with quantum science and technology.”

The Faculty Early Career Development (CAREER) Program is an NSF-wide activity that offers the Foundation’s most prestigious awards in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization. Activities pursued by early-career faculty should build a firm foundation for a lifetime of leadership in integrating education and research.

Gage Erwin named DOE Computational Science Graduate Fellow

This post is adapted from the DOE’s announcement regarding the Computational Science Fellows

Congrats to physics PhD student Gage Erwin on being named a U.S. Department of Energy Computational Science Graduate Fellow!

Photo of Gage Erwin
Gage Erwin

The 2025-2026 incoming fellows will learn to apply high-performance computing (HPC) to research in disciplines including machine learning, quantum computing, chemistry, astrophysics, computational biology, energy, engineering and applied mathematics.

The program, established in 1991 and funded by the DOE’s Office of Science and the National Nuclear Security Administration (NNSA), trains top leaders in computational science.

“We are so pleased to congratulate the 30 new fellows,” said Ceren Susut, Associate Director of Science for DOE’s Advanced Scientific Computing Research program. “Each of these incredibly talented people has demonstrated both outstanding academic achievement and tremendous research potential. Their research topics cover some of the highest priorities of the Department of Energy, including quantum computing, artificial intelligence, and science and engineering for energy and nuclear security.”

Fellows receive support that includes a stipend, tuition, and fees, and an annual academic allowance. Renewable for up to four years, the fellowship is guided by a comprehensive program of study that requires focused coursework in science and engineering, computer science, applied mathematics and HPC. It also includes a three-month practicum at one of 22 DOE-approved sites across the country, and an annual meeting where fellows present their research in poster and talk formats.

Matt Otten part of project to develop novel quantum sensor

This post is adapted from one originally published by Fermilab

Fermilab is finalizing a partnership with Diraq and several universities — including the University of Wisconsin–Madison — for the Quandarum project. The project team intends to combine extreme environment electronics and silicon spin qubits to develop a quantum sensor that could profoundly impact the field of high-energy physics.

Researchers at the Department of Energy’s Fermi National Accelerator Laboratory, along with scientists and engineers at Diraq, University of Wisconsin–Madison, University of Chicago and Manchester University, have proposed the development of a quantum sensor made of quantum bits called spin qubits in silicon to probe beyond Standard Model physics.

hands from an unidentified individual hold a metal pancake-like object with some tech-y designed on it. The object is roughly a foot in diameter.
The scalability advantages available via silicon CMOS wafer manufacture deliver significant promise for Diraq’s patented spin-based quantum dot technology. Credit: Diraq

By placing many spin qubits together on a chip to form a sensor, the researchers seek to enable scientists to tease out even the faintest signals from the cosmos. Such a sensor could potentially be used to detect axions, hypothetical particles that some scientists believe comprises dark matter.

Led by Fermilab, the Quandarum project is one of 25 projects funded for a total of $71 million by the DOE program Quantum Information Science Enabled Discovery. The QuantISED program supports innovative research at national laboratories and universities that applies quantum technologies to use for fundamental science discovery.

profile photo of Matt Otten
Matthew Otten

“The project is looking at how quantum sensors might be used for high energy physics applications, specifically in axion detection,” says UW–Madison physics professor Matt Otten. “[My partners] know much more about axion detection, I happen to not know about axions, and that’s why we’re a team.”

With this award, researchers plan to develop a novel sensor. To do so, they plan to bring together for the first time two specialized technologies: spin qubits in silicon and cryogenic “skipper” analog-to-digital converter circuits used for the readout of dark matter detectors.

Silicon spin-based quantum sensors can provide a powerful platform for testing theories around dark matter because they can exploit quantum interactions to increase sensitivity and explore the limits of what scientists understand about high-energy physics.

“My group’s part of it is, given these large silicon qubit arrays, we might utilize the fact that they are essentially quantum computers,” Otten says. “We’re going to be studying entanglement enhanced quantum sensing, either through the use of error correcting code or through novel entangled states.”

Read the full story

 

U.S. Cyber Command visit highlights UW–Madison’s leadership in cyber research and education

a group of people walks through a room with equipment

UW–Madison plays a leading role as a research and education partner for national cybersecurity. It reinforced this commitment recently by welcoming to campus a delegation from the United States Cyber Command (USCYBERCOM), which is responsible for the Department of Defense’s cyberspace capabilities.

Read the full article at: https://news.wisc.edu/u-s-cyber-command-visit-highlights-uw-madisons-leadership-in-cyber-research-and-education/

Welcome, Prof. Britton Plourde!

profile photo of Britton Plourde
Britton Plourde (credit: Isabelle Delfosse, L&S)

Condensed matter experimentalist Britton Plourde received his bachelor’s in physics and music performance from the University of Michigan. He then went to grad school at UIUC, earning a PhD in physics and a master’s in music performance. He completed a postdoc at UC-Berkeley, then began as an assistant professor of physics at Syracuse University in 2005, moving up the ranks to full professor there. In Fall 2024, Plourde joined the UW–Madison physics department as a full professor. He is joining the department on a half-time appointment; for the other half, he will be working at Qolab, a quantum computing startup company based in Madison.

 Please give an overview of your research.

I work on superconducting quantum circuits. We make microfabricated superconducting circuits that have what are called Josephson tunnel junctions in them. And one of the biggest things we use these for is making qubits. We study all of the various physics related to how qubits work, what limits their performance, and ways to make them perform better so you could eventually build a practical, large-scale quantum computer. My research is similar to Robert McDermott’s and Roman Kuzmin’s.

What are the first one or two projects that you will have your group working on or continuing to work on when you arrive in Madison?

The company I’m working with, Qolab, is focused on building a quantum computer. My academic research lab at the university will be focused on fundamental physics related to operation of qubits, including the individual components of qubits like the Josephson junctions and to different processes that limit the performance of qubits. At the same time, the company is really focused on the technology of fabricating lots of qubits in a uniform, reproducible way and building them into a quantum computer.

In my group, a significant focus is going to be on understanding quasiparticles in superconducting qubits and how they impact the behavior of those qubits. Quasiparticles are electronic excitations above the superconducting ground state. The superconducting ground state is important because it doesn’t have any dissipation. But these quasiparticles are dissipative, and they can degrade the performance of a superconducting circuit. There are various things that can generate the quasiparticles, but one of them is radioactivity: background radiation from radioactive contaminants in the lab or from cosmic rays. My group is going to continue spending time on understanding the physics of those processes and coming up with ways to try to mitigate their effects to make qubits that are more immune to quasiparticles.

We’re also hoping to study quasiparticle physics in qubits for the completely opposite reason: instead of trying to mitigate the effects of quasiparticles to make better qubits, it’s to amplify the effects of quasiparticles to make better detectors, potentially to detect dark matter particles. Robert and I are co-principal investigators with some particle physics collaborators on two Department of Energy proposals for this work that we recently submitted. This work hasn’t been funded yet, but if it is, it is going to be a new and interesting research direction in both of our groups.

What attracted you to Madison and the university?

It’s a great department. I’ve known it for a long time because I collaborated with Robert almost as long as he’s been there. I’ve visited a lot over the years, and I like the area and the city. The university has made an impressive investment in quantum information science, and they’re a real leader in that area and have research strengths across multiple different qubit technologies, both experimentally and with a strong team of theorists working on different aspects of quantum information science and condensed matter. It’s really a powerhouse place, so I’m excited to join. University leadership has also been very supportive of the startup, they’re strongly encouraging of the entrepreneurial direction of faculty, and that’s not the case at a lot of other places.

What is your favorite element and/or elementary particle?

My favorite element has to be aluminum. That’s the superconductor we use the most. The same aluminum that you could use to wrap a hot dog at a baseball game to keep it warm, you can instead cool it down to below one degree Kelvin and it becomes a superconductor. And it makes great Josephson junctions for qubits.

What hobbies and interests do you have?

Well, I’m still a musician, I’m a flutist. I don’t really make money on it anymore, but I was a professional musician for a while. For the last three years of grad school, I had a job in a professional orchestra. I do still play occasionally, and I’ll have to see how much time I have when we get to Madison. My wife is a professional musician. She’s an oboist and she’ll be working part time in the School of Music developing a new monthly recital series.

Welcome, Professor Ben Woods!

profile photo of Ben Woods
Ben Woods

Condensed matter theorist Ben Woods joined the department as an assistant professor this fall. Originally from a small town in North Dakota, Woods studied physics at the University of North Dakota and earned a PhD in physics from West Virginia University. He first came to UW–Madison for a postdoc with Mark Friesen in 2021, and now moves into his faculty role.

Please give an overview of your research.

I primarily work in two main areas of condensed matter theory and quantum information science. The first area is the theory of semiconductor quantum dots, with applications towards building and operating quantum computers based on spin qubits. Quantum dots can be thought of as artificial atoms in which electrons are trapped and manipulated within a semiconductor, such as silicon, by metallic gates that sit on top of the semiconductor. An electron in the quantum dot forms the basis for a type of qubit called a spin qubit, where the quantum information is stored in the spin of the electron. I investigate how we can build higher quality spin qubits. One aspect of this is analyzing and designing single and two qubit gates such that their efficiency and noise resiliency can be improved. Another aspect is studying the materials and design of quantum dot devices to optimize certain properties, such as how the qubits respond to an external magnetic field. I am also interested in quantum dot arrays as a platform for quantum simulation. Here the idea is to engineer the interactions between the quantum dots to emulate a quantum system of interest.

The other area I work in is semiconductor-superconductor heterostructures. Here, you’re trying to combine desirable properties of both types of materials to create interesting devices that would otherwise be impossible. I study semiconductor-superconductor heterostructures that can give rise to exotic particles known as Majorana zero modes, which form the basis for topological qubits. These qubits are immune to certain error sources that more conventional types of qubits are not. I am trying to understand the effects of disorder on these heterostructures and develop new schemes in which Majorana zero modes can be realized.

What are one or two of the main projects your group will work on first?

One initial project will focus on designing a new qubit architecture for quantum dot spin qubits. In the most conventional type of spin qubit, you have a single electron spin that is manipulated by jiggling it with an electric field back and forth within a single quantum dot. It turns out, however, that these qubits can be manipulated more efficiently if you can hop electrons between multiple quantum dots. Specifically, I’ve devised new schemes involving three dots in a triangular geometry in which single-qubit gates can be performed quite efficiently. These ideas work in principle, but now it’s a matter of quantitatively studying how noise resilient the scheme is and how finely tuned the system parameters need to be for things to go as planned.

A second initial project is more towards quantum simulation using quantum dot arrays. The project will focus on studying magnetism in quantum dot arrays. In other words, asking how the spins of the quantum dot electrons organize due to their mutual interaction. One interesting wrinkle in these quantum dot arrays based on silicon is that there is a valley degree of freedom in addition to the usual spin degree of freedom. The project involves understanding the effects on the magnetic ordering due to this additional valley degree of freedom. Specifically, I am interested in how fluctuations in the valley degree of freedom from one dot to the next can impact magnetic ordering.

What attracted you to Madison and the university?

There were two main reasons. First, my wife had gotten a residency as an anesthesiologist at the UW hospital. So that was an obvious motivation. Second, one of my grad school advisors knew Mark Eriksson and Mark Friesen and thought it’d be a natural fit for me to work with them as a postdoc. Since moving here, my family has enjoyed Madison, and I really like the physics department. The people are very friendly and collaborative. I am incredibly happy to be able to stay in Madison and at the UW physics department.

What is your favorite element and/ or elementary particle?

It has to be silicon, right? It’s the material I think about every day. And the world economy is largely based on stuff made with silicon. So that’s pretty cool?

What hobbies and interests do you have?

I like to play guitar, read, watch sports, and spend time with my family and friends. I have two kids, three years and six months old, who I like to spend most of my free time on.