New 3D integrated semiconductor qubit saves space without sacrificing performance

Small but mighty, semiconducting qubits are a promising area of research on the road to a fully functional quantum computer. Less than one square micron, thousands of these qubits could fit into the space taken up by one of the current industry-leading superconducting qubit platforms, such as IBM’s or Google’s.

For a quantum computer on the order of tens or hundreds of qubits, that size difference is insignificant. But to get to the millions or billions of qubits needed to use these computers to model quantum physical processes or fold a protein in a matter of minutes, the tiny size of the semiconducting qubits could become a huge advantage.

Except, says Nathan Holman, who graduated from UW–Madison physics professor Mark Eriksson’s group with a PhD in 2020 and is now a scientist with HRL Laboratories, “All those qubits need to be wired up. But the qubits are so small, so how do we get the lines in there?”

In a new study published in NPJ Quantum Information on September 9, Holman and colleagues applied flip chip bonding to 3D integrate superconducting resonators with semiconducting qubits for the first time, freeing up space for the control wires in the process. They then showed that the new chip performs as well as non-integrated ones, meaning that they solved one problem without introducing another.

If quantum computers are to have any chance of outperforming their classical counterparts, their individual qubit units need to be scalable so that millions of qubits can work together. They also need an error correction scheme such as the surface code, which requires a 2D qubit grid and is the current best-proposed scheme.

a three-chip sandwich showing the device architecture.
Proposed approach: the 3D integrated device consists of a superconducting die (top layer) and a semiconducting qubit die (middle layer) brought together though a technique known as flip chip integration. The bottom layer, proposed but not studied experimentally in this work, will serve to enable wiring and readout electronics. This study is the first time that semiconducting qubits (middle layer) and superconducting resonators (top layer) have been integrated in this way, and it frees up space for the wiring needed to control the qubits. | Credit: Holman et al., in NPJ Quantum Information

To attain any 2D tiled structure with current semiconducting devices, it quickly gets to the point where 100% of available surface area is covered by wires — and at that point, it is physically impossible to expand the device’s capacity by adding more qubits.

To try to alleviate the space issue, the researchers applied a 3D integration method developed by their colleagues at MIT. Essentially, the process takes two silicon dies, attaches pillars of the soft metal indium placed onto one, aligns the two dies, and then presses them together. The result is that the wires come in from the top instead of from the side.

“The 3D integration helps you get some of the wiring in in a denser way than you could with the traditional method,” Holman says. “This particular approach has never been done with semiconductor qubits, and I think the big reason why it hadn’t is that it’s just a huge fabrication challenge.”

profile photo of Mark Eriksson
Mark Eriksson
profile photo of Nathan Holman
Nathan Holman

In the second part of their study, the researchers needed to confirm that their new design was functional — and that it didn’t add disadvantages that would negate the spacing success.

The device itself has a cavity with a well-defined resonant frequency, which means that when they probe it with microwave photons at that frequency, the photons transmit through the cavity and are registered by a detector. The qubit itself is coupled to the cavity, which allows the researchers to determine if it is functioning or not: a functioning qubit changes the resonant frequency, and the number of photons detected goes down.

They probed their 3D integrated devices with the microwave photons, and when they expected their qubits to be working, they saw the expected signal. In other words, the new design did not negatively affect device performance.

“Even though there’s all this added complexity, the devices didn’t perform any worse than devices that are easier to make,” Holman says. “I think this work makes it conceivable to go to the next step with this technology, whereas before it was very tricky to imagine past a certain number of qubits.”

Holman emphasizes that this work does not solve all the design and functionality issues currently hampering the success of fully functional quantum computers.

“Even with all the resources and large industry teams working on this problem, it is non-trivial,” Holman says. “It’s exciting, but it’s a long-haul excitement. This work is one more piece of the puzzle.”

The article reports that this work was sponsored in part by the Army Research Office (ARO) under Grant Number W911NF-17-1-0274 (at UW­–Madison) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002 (at MIT Lincoln Laboratory).

 

Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications

greyscale scanning electron micrograph of graphene nanoribbons that looks like an intricate fingerprint. has also been described as a "zen garden"

From radio to television to the internet, telecommunications transmissions are simply information carried on light waves and converted to electrical signals.

Joel Siegel

Silicon-based fiber optics are currently the best structures for high-speed, long distance transmissions, but graphene — an all-carbon, ultra-thin and adaptable material — could improve performance even more.

In a study published April 16 in ACS Photonics, University of Wisconsin–Madison researchers fabricated graphene into the smallest ribbon structures to date using a method that makes scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

“Previous research suggested that to be viable for telecommunication technologies, graphene would need to be structured prohibitively small over large areas, (which is) a fabrication nightmare,” says Joel Siegel, a UW–Madison graduate student in physics professor Victor Brar’s group and co-lead author of the study. “In our study, we created a scalable fabrication technique to make the smallest graphene ribbon structures yet and found that with modest further reductions in ribbon width, we can start getting to telecommunications range.”

For the full story, please visit: https://news.wisc.edu/flexible-easy-to-scale-nanoribbons-move-graphene-toward-use-in-tech-applications/

Deniz Yavuz announced as Vilas Associate

The Office of the Vice Chancellor for Research and Graduate Education has announced 23 faculty winners of the Vilas Associates Competition, including physics professor Deniz Yavuz. The Vilas Associates Competition recognizes new and ongoing research of the highest quality and significance.

The award is funded by the William F. Vilas Estate Trust.

Recipients are chosen competitively by the divisional research committees on the basis of a detailed proposal. Winners receive up to two-ninths of research salary support (including the associated fringe costs) for both summers 2021 and 2022, as well as a $12,500 flexible research fund in each of the two fiscal years. Faculty paid on an annual basis are not eligible for the summer salary support but are eligible for the flexible fund portion of this award.

Shimon Kolkowitz awarded two grants to push optical atomic clocks past the standard quantum limit

Optical atomic clocks are already the gold standard for precision timekeeping, keeping time so accurately that they would only lose one second every 14 billion years. Still, they could be made to be even more precise if they could be pushed past the current limits imposed on them by quantum mechanics.

With two new grants from the U.S. Army Research Office, an element of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, UW–Madison physics professor Shimon Kolkowitz proposes to introduce quantum entanglement — where atoms interact with each other even when physically distant — to optical atomic clocks. The improved clocks would allow researchers to ask questions about fundamental physics, and they have applications in improving quantum computing and GPS.

Atomic clocks are so precise because they take advantage of the natural vibration frequencies of atoms, which are identical for all atoms of a particular element. These clocks operate at or near the standard quantum limit, a fundamental limit on performance imposed on clocks where the atoms are all independent of each other. The only way to push the clocks past that limit is to achieve entangled states, strange quantum states where the atoms are no longer independent and they become intertwined.

a cartoon showing the atoms in their pancakes as described in the text“That turns out to be hard for a number of reasons. Entanglement requires these atoms to interact with each other, but a good clock requires them not to interact with each other or anything else,” Kolkowitz says. “So, you need to engineer a situation where you can make the atoms interact strongly, but you can also switch those interactions off. And those are some of the same requirements that are necessary for quantum computing.”

Kolkowitz is already building an optical atomic clock in his lab, albeit one that is not yet using entangled states. To make the clock, they first laser-cool strontium atoms to one millionth of one degree Celsius above absolute zero, then load the atoms into an optical lattice. In the lattice, the atoms are separated into what is effectively a tiny stack of pancakes — each atom can move around within their own flat disk, but they cannot jump into another pancake.

Though the atoms’ are stuck in their own pancake, they can interact with each other if their electrons are highly excited. This type of atom, known as Rydberg atoms, becomes close to one million times larger than an unexcited counterpart because the excited electron can be microns away from the nucleus.

“It’s kind of crazy that a single atom can be that big, and when you make them that much bigger, they interact much more strongly with each other than they do in their ground states,” Kolkowitz says. “Basically it means you can go from the atoms not interacting at all to interacting very strongly. That’s exactly what you want for quantum computing, and it’s what you want for this atomic clock.”

With the two ARO grants, Kolkowitz expects to generate Rydberg atoms in his lab’s atomic clock. One of the grants, a Defense University Research Instrumentation Program (DURIP), will fund the specialized UV laser that generates the high energy photons needed to excite the atoms into the highly excited Rydberg states. The second grant will fund personnel and other supplies. Kolkowitz will collaborate with UW–Madison physics professor Mark Saffman, who, along with physics professor Thad Walker, pioneered the use of Rydberg atoms for quantum computing.

In addition to being useful for developing new approaches to ask questions about fundamental physics in his research lab, these ultraprecise atomic clocks are of interest to the Department of Defense for atomic clock-based technologies such as GPS, and because they can be used to precisely map Earth’s gravity.

Researchers awarded Department of Energy Quantum Information Science Grant

Three UW–Madison physics professors and their colleagues have been awarded a U.S. Department of Energy (DOE) High Energy Physics Quantum Information Science award for an interdisciplinary collaboration between theoretical and experimental physicists and experts on quantum algorithms.

The grant, entitled “Detection of dark matter and neutrinos enhanced through quantum information,” will bring a total of $2.3 million directly to UW-Madison. Physics faculty include principal investigator Baha Balantekin as well as Mark Saffman, and Sue Coppersmith. Collaborators on the grant include Kim Palladino at the University of Oxford, Peter Love at Tufts University, and Calvin Johnson at San Diego State University.

With the funding, the researchers plan to use a quantum simulator to calculate the detector response to dark matter particles and neutrinos. The simulator to be used is an array of 121 neutral atom qubits currently being developed by Saffman’s group. Much of the research plan is to understand and mitigate the behavior of the neutral atom array so that high accuracy and precision calculations can be performed. The primary goal of this project is to apply lessons from the quantum information theory in high energy physics, while a secondary goal is to contribute to the development of quantum information theory itself.

Mark Friesen promoted to Distinguished Scientist

profile photo of Mark Friesen
Mark Friesen

Congratulations to Mark Friesen on his promotion to Distinguished Scientist! The distinguished title is the highest title available to an academic staff member at UW–Madison.

Friesen joined the physics department in 2004 as an associate scientist, and has been with UW–Madison since 1998, when he began a postdoc in the Materials Sciences and Engineering department. His main research effort at UW–Madison has been related to silicon quantum dot quantum computing, in collaboration with physics professors Mark Eriksson, Sue Coppersmith, Bob Joynt, Maxim Vavilov, and others.

Friesen says his most important achievement in the department is serving as a research advisor: In 16 years with UW–Madison physics, he has advised or co-advised six postdocs, 11 Ph.D. theses, four current Ph.D. students, two M.S. theses, and several undergraduate research projects. He also has 123 peer-reviewed publications and five U.S. patents, and serves as a consultant for ColdQuanta, a quantum computing company.

“Mark is known around the world for his expertise in semiconductor-based quantum computing,” Mark Eriksson says. “He is especially well known for his calculations on how the band structure in silicon interacts with interfaces to determine the quantum states for electrons in silicon-based quantum devices.”

Congrats, Mark Friesen, on this well-deserved honor!

Surprising communication between atoms could improve quantum computing

A dark room with pink-hued lasers reflecting off of mirrors
In their experiments, UW–Madison physicists led by Deniz Yavuz immobilized a group of rubidium atoms by laser-cooling them to just slightly above absolute zero. Then, they shined a laser at rubidium’s excitation wavelength to energize electrons. PHOTO COURTESY OF YAVUZ LAB

A group of University of Wisconsin­–Madison physicists has identified conditions under which relatively distant atoms communicate with each other in ways that had previously only been seen in atoms closer together — a development that could have applications to quantum computing.

The physicists’ findings, published Oct. 14 in the journal Physical Review A, open up new prospects for generating entangled atoms, the term given to atoms that share information at large distances, which are important for quantum communications and the development of quantum computers.

“Building a quantum computer is very tough, so one approach is that you build smaller modules that can talk to each other,” says Deniz Yavuz, a UW–Madison physics professor and senior author of the study. “This effect we’re seeing could be used to increase the communication between these modules.”

profile photo of Deniz Yavuz
Deniz Yavuz

The scenario at hand depends on the interplay between light and the electrons that orbit atoms. An electron that has been hit with a photon of light can be excited to a higher energy state. But electrons loathe excess energy, so they quickly shed it by emitting a photon in a process known as decay. The photons atoms release have less energy than the ones that boosted the electron up — the same phenomenon that causes some chemicals to fluoresce, or some jellyfish to have a green-glowing ring.

“Now, the problem gets very interesting if you have more than one atom,” says Yavuz. “The presence of other atoms modifies the decay of each atom; they talk to each other.”

Read the full  UW–Madison news story

Chuanhong (Vincent) Liu named to Fall 2020 cohort of the Quantum Information Science and Engineering Network (QISE-NET)

Graduate student Chuanhong (Vincent) Liu (McDermott Group) has had his project awarded funding through QISE-NET, the Quantum Information Science and Engineering Network. Run through the University of Chicago, QISE-NET is open to any student pursuing an advanced degree in any field of quantum science. Liu and other students in his cohort earn up to three years of support, including funding, mentoring and training at annual workshops. All awardees are paired with a mentoring QISE company or national lab, at which they will complete part of their projects. Liu describes his project, below. Cecilia Vollbrecht, a grad student in Chemistry, also earned this honor. Both Liu and Volbrecht are students in the Wisconsin Quantum Institute.

The Single Flux Quantum (SFQ) digital logic family has been proposed as a scalable approach for the control of next-generation multiqubit arrays. With NIST’s strong track record in the field of SFQ digital logic and the expertise of McDermott’s lab in the superconducting qubit area, we expect to achieve high fidelity SFQ-based qubit control. The successful completion of this research program will represent a major step forward in the development of a scalable quantum-classical interface, a critical component of a fully error-corrected fault-tolerant quantum computer.

WQI team named winners in international quantum research competition

A WQI faculty team was one of 18 winners in the Innovare Advancement Center’s “Million Dollar International Quantum U Tech Accelerator” competition, which awarded a total of $1.35 million last week. The winning teams, including UW­–Madison physics professors Shimon Kolkowitz and Mark Saffman, each earned $75,000 toward their proposed research.

The competition attracted nearly 250 proposals from teams across the world in the areas of quantum timing, sensing, computing and communications, and 36 teams were invited to present at the live virtual event.

Full story

Q-NEXT collaboration awarded National Quantum Initiative funding

The University of Wisconsin–Madison solidified its standing as a leader in the field of quantum information science when the U.S. Department of Energy (DOE) and the White House announced the Q-NEXT collaboration as a funded Quantum Information Science Research Center through the National Quantum Initiative Act. The five-year, $115 million collaboration was one of five Centers announced today.

Q-NEXT, a next-generation quantum science and engineering collaboration led by the DOE’s Argonne National Laboratory, brings together nearly 100 world-class researchers from three national laboratories, 10 universities including UW–Madison, and 10 leading U.S. technology companies to develop the science and technology to control and distribute quantum information.

“The main goals for Q-NEXT are first to deliver quantum interconnects — to find ways to quantum mechanically connect distant objects,” says Mark Eriksson, the John Bardeen Professor of Physics at UW–Madison and a Q-NEXT thrust lead. “And next, to establish a national resource to both develop and provide pristine materials for quantum science and technology.”

profile photo of Mark Eriksson
Mark Eriksson

Q-NEXT will focus on three core quantum technologies:

  • Communication for the transmission of quantum information across long distances using quantum repeaters, enabling the establishment of “unhackable” networks for information transfer
  • Sensors that achieve unprecedented sensitivities with transformational applications in physics, materials, and life sciences
  • Processing and utilizing “test beds” both for quantum simulators and future full-stack universal quantum computers with applications in quantum simulations, cryptanalysis, and logistics optimization.

Eriksson is leading the Materials and Integration thrust, one of six Q-NEXT focus areas that features researchers from across the collaboration. This thrust aims to: develop high-coherence materials, including for silicon and superconducting qubits, which is an essential component of preserving entanglement; develop a silicon-based optical quantum memory, which is important in developing a quantum repeater; and improve color-center quantum bits, which are used in both communication and sensing.

“One of the key goals in Materials and Integration is to not just improve the materials but also to improve how you integrate those materials together so that in the end, quantum devices maintain coherence and preserve entanglement,” Eriksson says. “The integration part of the name is really important. You may have a material that on its own is really good at preserving coherence, yet you only make something useful when you integrate materials together.”

Six other UW­–Madison and Wisconsin Quantum Institute faculty members are Q-NEXT investigators: physics professors Victor Brar, Shimon Kolkowitz, Robert McDermott, and Mark Saffman, electrical and computer engineering professor Mikhail Kats, and chemistry professor Randall Goldsmith. UW–Madison researchers are involved in five of the six research thrusts.

“I’m excited about Q-NEXT because of the connections and collaborations it provides to national labs, other universities, and industry partners,” Eriksson says. “When you’re talking about research, it’s those connections that often lead to the breakthroughs.

The potential impacts of Q-NEXT research include the creation of a first-ever National Quantum Devices Database that will promote the development and fabrication of next generation quantum devices as well as the development of the components and systems that enable quantum communications across distances ranging from microns to kilometers.

“This funding helps ensure that the Q-NEXT collaboration will lead the way in future developments in quantum science and engineering,” says Steve Ackerman, UW–Madison vice chancellor for research and graduate education. “Q-NEXT is the epitome of the Wisconsin Idea as we work together to transfer new quantum technologies to the marketplace and support U.S. economic competitiveness in this growing field.”

infographic of all q-next partner national labs, universities, and industry
The Q-NEXT partners