Speaker: Kirill Shtengel, University of California-Riverside
Abstract: States of matter are conventionally classified according to broken symmetries. Topologically ordered phases fall outside of this paradigm: with no local order parameter, they nevertheless have many peculiar properties setting them apart from disordered phases. In 2D, such phases may support anyons - quasiparticles that are neither bosons nor fermions. Moreover, anyons with non-Abelian statistics can occur, particularly in the fractional quantum Hall regime. In this talk, I will focus on solid state interferometers designed to detect such exotic statistics. I will discuss recent experiments in the the quantum Hall regime at 5/2 filling where the evidence for the existence of non-Abelian anyons may have in fact been observed for the first time. I will also mention potential applications of such interferometeric schemes for topological quantum computation.