Speaker: Victor Galitski, University of Maryland -- CANCELLED
Abstract: Low-dimensional superconductivity provides a unique area in which a fascinating variety of novel and fundamental phenomena occur. In this talk, I will review recent theoretical and experimental work on superconducting fluctuation phenomena in low-dimensional superconductors. First, I will discuss unusual phases and fluctuation effects evident in the experimental studies of the field-tuned transition in two-dimensional disordered superconducting films and describe our theory of quantum superconducting fluctuations, which explains anomalous transport and thermal transport observed in the vicinity of the transition in these films. Next, I will focus on the recent experiment by the Penn State group [Wang et al., Nature Physics 6, 389 (2010)] on the long-range proximity effect in ferromagnetic nanowires proximity-coupled to superconducting electrodes. I will propose an explanation for both the anomalously-strong proximity effect and the mysterious resistance peak that preempts the superconducting transition in this experiment. In conclusion, I will discuss this and related setups involving ferromagnetic nanowires in the context of one-dimensional topological superconductors.