Abstract: In one extreme, where the interactions are sufficiently weak compared to the interactions, electrons form a "Fermi liquid" - the state that accounts for the properties of simple metals. In the other extreme, where the interactions are dominant, the electrons form various "Mott" insulating or "Wigner crystalline" phases, often characterized by broken spatial and/or magnetic symmetries. Corresponding charge and/or magnetically ordered insulating phases are common in nature. Between these two extremes lie highly correlated electronic fluids, and correspondingly a host of interesting and perplexing materials, including such diverse systems as the cuprate and iron-based high temperature superconductors, the failed metamagnet Sr3Ru2O7, and a variety of quantum Hall fluids. Some insight into this rich intermediate coupling regime can be obtained from viewing it as a partially melted electron solid, rather than as a strongly interacting gas. Here, analogies with the liquid crystalline phases of complex classical fluids provide useful guidance for a new approach to this key problem in condensed matter physics.