Abstract: One of the most important discoveries of the Fermi Gamma-ray Space Telescope is the detection of two giant bubbles extending 50 degrees above and below the Galactic center (GC). The symmetry about the GC of the Fermi bubbles suggests some episode of energy injection from the GC, possibly related to past jet activity of the central active galactic nuclei (AGN). Thanks to the proximity to the GC, the Fermi Bubbles are excellent laboratories for studying cosmic rays (CRs), Galactic magnetic field, and AGN feedback in general. Using three-dimensional magnetohydrodynamic simulations that include relevant CR physics, I will show how leptonic AGN jets can explain the key characteristics of the Fermi bubbles and the spatially correlated features observed in the X-ray, microwave, and radio wavelengths. I will also discuss how we use our simulations in combination with the multi-wavelength data to obtain constraints on the composition of the Fermi bubbles.