Abstract: Compactified M-theory generically describes many features of our world, including gravity; Yang-Mills forces like S(U3)xSU(2)xU(1); chiral fermions (so parity violation); softly broken supersymmetry; a solution to the hierarchy problem; electroweak symmetry breaking and Higgs physics (including the ratio of the Higgs boson mass to the Z mass, and Higgs decay branching ratios); grand unification; small EDMs; no flavor changing problems and more. It predicts a non-thermal cosmological history and addresses the form(s) of dark matter and the ratio of matter to dark matter. And it predicts the superpartner spectrum: heavy (tens of TeV) squarks and sleptons, light (~ TeV) gluino and LSP. Superpartners should not have been found in Run I at LHC, and can be found in Run II (gluinos about 1..5 TeV, winos about 640 GeV). Five general assumptions are made, and there are no parameters to vary. There has been good progress in calculating and elucidating the predictions, but there is still much to do. I will explain the Higgs and superpartner predictions in some detail.