Speaker: Dr. Raphael Pooser, Oak Ridge National Lab
Abstract: In this talk I will outline recent advances in the field of computing enabled by quantum mechanics. Quantum computing is poised to enter into an era where computational power surpasses what classical machines can do. In this near-term era, when devices are not yet fault tolerant, but still out of reach of classical computers, the challenge is to harness them for useful computation despite the presence of significant noise in these systems. In particular, error mitigation is required to obtain useful results from these systems. We will outline several error mitigation techniques and show how they can be used in combination. One of the immediate applications on near term hardware include optimization of sampling from unknown probability distributions, which have applications in a broad array of quantum simulations, from chemistry to nuclear physics to field theory problems. After a brief review of the field, we will discuss several current architectures and applications of quantum computing.