Events at Physics |
In this talk, I will first describe how the advent of broadband radio polarimetry is revolutionizing the field of cosmic magnetism by enabling unambiguous and precise polarization measurements. Moreover, these broadband polarization data allow one to derive magnetized gas properties that were impossible to obtain in the past with narrowband data and these new data are now shedding new light on galactic magnetic fields near and far.
I will then demonstrate how broadband polarimetry, in combination with innovative observational methods can allow us to, for the first time, robustly measure magnetic fields in galaxies in previously uncharted redshift regimes. I will present the first results from our campaign, including our record-holder detection of coherent magnetic fields in a disk galaxy as seen 4.6 Gyrs ago, with similar field strength and geometry to local galaxies. This is the most distant galaxy to-date with a robust magnetic field measurement and it is consistent with mean-field dynamo generated fields already in place when the Universe was 2/3 of its current age. I will describe our efforts to interpret the observed magnetic fields in distant galaxies by producing synthetic polarimetric observations from dynamo theories and cosmological magneto-hydrodynamics simulations.
To conclude, I will discuss exciting prospects of decoding the origin and evolution of galactic magnetic fields with Square Kilometre Array pathfinders and the next generation radio telescopes.