Events

Physics ∩ ML Seminars

<< Spring 2020 Summer 2020 Fall 2020 >>
Subscribe your calendar or receive email announcements of events
Discovering Symbolic Models in Physical Systems using Deep Learning
Date: Wednesday, July 29th
Time: 11:00 am - 12:00 pm
Place: Please register for this online event:
Speaker: Shirley Ho, Flatiron Institute
Abstract: We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example—a detailed dark matter simulation—and discover a new analytic formula that can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution-data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.
Host: Shiu
Add this event to your calendar