We use cookies on this site. By continuing to browse without changing your browser settings to block or delete cookies, you agree to the UW–Madison Cookie Notice.
Thirty-two members of the University of Wisconsin–Madison faculty — including physics professor Mark Saffman — have been awarded fellowships from the Office of the Vice Chancellor for Research and Graduate Education for 2022-23. The awardees span the four divisions on campus: arts and humanities, physical sciences, social sciences and biological sciences.
“These awards provide an opportunity for campus to recognize our outstanding faculty,” says Steve Ackerman, vice chancellor for research and graduate education. “They highlight faculty efforts to support the research, teaching, outreach and public service missions of the university.”
The awards are possible due to the research efforts of UW–Madison faculty and staff. Technology that arises from these efforts is licensed by the Wisconsin Alumni Research Foundation and the income from successful licenses is returned to the OVCRGE, where it’s used to fund research activities and awards throughout the divisions on campus.
Mark Saffman was awarded a WARF professorship. These professorships come with $100,000 and honor faculty who have made major contributions to the advancement of knowledge, primarily through their research endeavors, but also as a result of their teaching and service activities. Award recipients choose the names associated with their professorships. Saffman, the Johannes Rydberg Professor of Physics and director of The Wisconsin Quantum Institute, first began work on atomic physics and initiated a long-term effort to develop quantum computers. He is known for his research as a leader in the ongoing development of atomic quantum computers based on the Rydberg blockade mechanism.
In addition, physics affiliate professor Mikhail Kats received a Romnes Faculty Fellowship.
Congratulations to Professor Lawler on his retirement!
Posted on
After 42 years on the UW–Madison faculty, Jim Lawler, the Arthur and Aurelia Schawlow Professor of Physics, has announced his retirement. Lawler is an atomic, molecular & optical physicist with a focus developing and applying laser spectroscopic techniques for determining accurate absolute atomic transition probabilities. His retirement is official as of May 22.
“What we’ve really done gradually over four-plus decades is make atomic spectroscopy more quantitative so that people can use it to really learn the detailed physics and chemistry of the remote universe,” Lawler says.
Lawler received his MS (’74) and PhD (’78) from this department, studying with now-professor emeritus Wilmer Anderson. In the two years after earning his doctorate, he was a research associate at Stanford University, and returned to UW–Madison as an assistant professor in 1980.
“There was a little bit of a disadvantage to come back to a place where I had recently been as a student,” Lawler says. “But I knew I would get extremely good graduate students and I would have access to a lot of infrastructure, and that combination really drew me back.”
He had extremely good graduate students and postdocs. Lawler supervised 26 PhD students and 10 terminal MS students. Those students and postdocs have gone on to prestigious National Research Council Fellowships, group lead positions at major companies, and tenured professorships, amongst many others.
Lawler served as department chair from 1994-1997. He also accumulated numerous awards and honors over his distinguished career. He is a fellow of the American Physical Society, the Optical Society of America, the U.K. Institute of Physics, and in 2020 he was elected a Legacy Fellow of the inaugural class of American Astronomical Society Fellows. He won the 1992 W. P. Allis Prize of the American Physical Society and the 1995 Penning Award from the International Union of Pure and Applied Physics for research in plasma physics, the two highest National and International Awards in the field of Low Temperature Plasma Physics. In 2017, he won Laboratory Astrophysics Prize of the American Astronomical Society for research in spectroscopy.
Longtime collaborator Blair Savage, UW–Madison professor emeritus of astronomy, says:
“Jim’s work in laboratory astrophysics provided extremely important atomic ultraviolet transition probabilities in support of the Hubble Space Telescope programs to determine elemental abundances of gaseous matter in the interstellar medium from three different ultraviolet spectrographs over the 32-year history of the space observatory. They included the Goddard High Resolution Spectrograph, the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph.”
And Wilmer Anderson, Lawler’s doctoral advisor, says:
“He was a very good graduate student, and he of course has turned out to be a really great scientist and colleague. His lifetime measurements on atomic physics played a key role in understanding the neutron star collisions. I’m sorry to see him retiring but I’m sure that he will leave a legacy behind that’s really fantastic. It’s going to be a big loss to the department not to have him around.”
Lawler has collaborated with his AMO colleagues over the years, but in more of an intellectual capacity than in research. As he notes, much of AMO is headed in the quantum information and quantum computing direction, with public and private funding helping to drive it. Still, he does not see AMO headed solely in the quantum direction.
“Decades from now the currently Hot areas of physics will be less glamorous, but those stars are still going to be light years away,” Lawler says. “I think the connection of astronomy and spectroscopy — the way we learn about the physics and chemistry of the remote universe — is strong enough that it will survive. And helping make spectroscopy in astronomy more quantitative is what we’ve done that will have some lasting significance.”
Congrats, grads!
Posted on
Congrats to all of the Physics and AMEP students who are graduating this weekend! Their names are listed below. Best of luck to all of you on your future endeavors — we know you’ll do great things!
Congrats, Spring 2022 grads! (* denotes graduating with honors)
Physics undergraduates named 2022 Hilldale Fellows
Posted on
Three UW–Madison undergraduate physics majors have been named 2022 Hilldale Fellows, in addition to one engineering physics major who is conducting their research in the Physics Department.
The Hilldale Undergraduate/Faculty Research Fellowship provides research training and support to undergraduates at UW–Madison. Students have the opportunity to undertake their own research project in collaboration with UW–Madison faculty or research/instructional academic staff. Approximately 97 – 100 Hilldale awards are available each year.
The students are:
Astronomy-Physics and Physics major Elyse Incha, in Susanna Widicus Weaver’s group (Chemistry)
Mathematics and Physics major Haoyi Jia, in Sridhara Dasu’s group (Physics)
Music and Physics major Daniel Laws, in Mary Halloran’s group (Integrative Biology)
Engineering physics major Nico Ranabhat, in Shimon Kolkowitz’s group (Physics)
Lee Pondrom’s High Energy Physics textbook now available
Summary: Elementary particle physics is a mature subject, with a wide variety of topics. Size considerations require any text to make choices in the subject matter, and such choices are to a large extent a matter of taste. Each topic in this text has been selected for its accessibility to as wide an audience of interested readers as possible, without any compromise in mathematical sophistication. There are of necessity a lot of formulas, but every one is derived, and an effort has been made to explain the various steps and clever tricks, and how to avoid pitfalls. The text is supplemented by exercises at the end of each chapter. The reader is urged to do the exercises that are designed to increase one’s skills in the material. The goal of the book is to bring to undergraduates an ability to enjoy this interesting subject.
Overall, forty-five textbooks have been awarded 2022 Textbook Awards by TAA. 12 textbooks received William Holmes McGuffey Longevity Awards, 13 textbooks received Textbook Excellence Awards, and 20 textbooks received Most Promising New Textbook Awards.
The awardees were recognized during an awards ceremony today, April 27.
A testimony in support of the award for Physics in the Arts says:
“Physics in the Arts is the third edition of a textbook which makes physics intriguing and even fun. It is a great effort in connecting complex physics principles with procedures and activities of artists. As artists and artisans, we create and share the beautiful through light and sound. For those of us interested in the aesthetic side of life, this book shows how a physical understanding of light and sound can expand and deepen our appreciation of the world opened up by these media. Understanding the concepts and connections of the book make their professional lives more fulfilling and more efficient.”
Alex Levchenko awarded NSF condensed matter and materials theory grant
This award supports theoretical research on quantum materials where the strong electron-electron interaction leads to unique transport, thermodynamic and magnetic properties. The research agenda addresses both fundamental physics of electronic interactions in complex materials and practical physics of mesoscopic devices relevant for applications in the domain of quantum science with micro and nanostructures.
The conversion of heat into electricity in solid state systems is governed by thermoelectric effects. The thermoelectric transport in quantum materials and devices is at the heart of various modern electronics applications. Over the last decade, transport measurements in atomically thin two-dimensional materials, such as graphene composed of a single layer of carbon atoms, provided overwhelming evidence that the flow of electrons in such systems exhibits hydrodynamic behavior that resembles the flow of a viscous fluid. These advances pushed the limits of hydrodynamics, providing new perspectives on old fundamental problems and opening doors for completely new discoveries of emergent physics phenomena. This project is, in part, devoted to new research on thermoelectric resistance of such systems as they are subjected to magnetic fields. The PI will also extend these studies to other forms of low-temperature electronic behavior in solids such as superconductivity, where electrons flow without any resistance, and magnetism, as well as their coexistence.
This award also supports the PI’s educational and outreach activities. The project places significant emphasis on training graduate and undergraduate students by engaging them in research in a highly collaborative environment with a postdoctoral scholar and colleagues from other groups. The PI will reach out to the public and high-school student audiences through (i) collaboration with the USA Physics Olympiad team to foster new generation of physicists and train high-school students for international scholastic competition and (ii) public education via entertaining Wonders of Physics shows. The PI will also be involved in the scientific coordination of a physics summer school as well as organization of international conferences and workshops.
UW–Madison, industry partners run quantum algorithm on neutral atom quantum computer for the first time
Posted on
A university-industry collaboration has successfully run a quantum algorithm on a type of quantum computer known as a cold atom quantum computer for the first time. The achievement by the team of scientists from the University of Wisconsin–Madison, ColdQuanta and Riverlane brings quantum computing one step closer to being used in real-world applications. The work out of Mark Saffman’s group was published in Nature on April 20.
Four University of Wisconsin–Madison students have been named winners of 2022 Barry Goldwater Scholarships, one of the most prestigious awards in the U.S. for undergraduates studying the sciences.
The UW–Madison winners are sophomore Lucy Steffes and juniors Sarah Fahlberg, Elias Kemna and Samuel Neuman.
Each university in the country may nominate up to four undergraduates for the annual award. To have all four candidates win is remarkable, says Julie Stubbs, director of UW’s Office of Undergraduate Academic Awards.
Lucy Steffes is a sophomore from Milwaukee, double-majoring in astronomy-physics and physics with a certificate in German. Her freshman year, Steffes began working with astronomy professor Snezana Stanimirovic on the ALMA-SPONGE project, for which she co-authored two papers recently published in the Astrophysical Journal. The project looks at molecular formation in the interstellar medium to describe potentially star-forming regions. At the end of her freshman year, Steffes earned a Hilldale Undergraduate Research Fellowship to calculate the upper limits of molecular detections in the Magellanic Stream. She spent last summer working at the Green Bank Observatory in West Virginia examining the chemical composition and evolution of two globules in the Helix Nebula. This summer, she will be returning to the observatory to examine neutral atomic carbon across the Helix Nebula. She plans to pursue a Ph.D. in astrophysics.
UW–Madison celebrates the first World Quantum Day, April 14
Posted on
Even quantum physicists do not understand quantum physics, or so the saying* goes.
“The worst grade I ever got in any class was my first quarter of quantum mechanics, because it just was weird and I didn’t understand it and I couldn’t get my head around it,” says Shimon Kolkowitz, a UW–Madison physics professor with the Wisconsin Quantum Institute (WQI), who now conducts research in quantum sensing. “It is something you develop some kind of feeling and intuition for over time, so it’s my personal feeling, and the feeling of many, that it’s important to start exposing people to these concepts much earlier [than in college].”
Quantum science is weird because it explains the workings of our world at the sub-atomic level. The classical physical world we experience and understand — the predictable trajectory of a baseball in the air or the Earth rotating around the sun — breaks down at these tiny scales.
Understand it or not, quantum science is here to stay.
“Quantum science is a rapidly-growing area of research and industry, and it’s going to have a number of major impacts on any number of different areas of commerce,” Kolkowitz says. “There’s a huge need to train a growing quantum workforce that can participate in, engage with, and develop these new technologies.”
QuanTime kits include a set of light sources and glow-in-the-dark stars. When participants shine different lights at the stars and observe the differences, they are learning about how light manipulates electrons.
The first-ever World Quantum Day, to be celebrated annually on April 14, is an international, community driven event to spark interest and generate enthusiasm for quantum mechanics. A goal of World Quantum Day is to promote public awareness of the positive impact quantum science has had and will have on society. [The date is taken from Planck’s constant, 4.14 * 10-15 eV · s, a value that is used in many quantum mechanics equations.]
“It’s a day to engage people in quantum science and let them know what is going on in current research, but it’s also a chance to demystify and make quantum science more accessible and available,” says Mallory Conlon, a quantum science outreach coordinator at UW–Madison.
Conlon is working with QuanTime, an educational initiative developed by leading quantum institutions to introduce quantum activities to middle and high school students. Anyone can play QuanTime’s online games, where they will learn about principals such as entanglement and superposition. There is even a quantum chess game.
Physics grad student and artist Aedan Gardill created this coloring page for WQD.
“We also have Wonders of Quantum Physics electron transition kits, and we’re sending out nearly 1000 kits to classrooms across the country,” Conlon says. “It’s an inquiry-based activity where participants learn how we can use light to manipulate atoms and electrons, which is really the underpinnings of how quantum computers work.”
The physics department and WQI will also be celebrating WQD by highlighting several quantum science researchers and sharing the top five quantum stories from the past year on social media. Follow along on Twitter and Instagram (both @UWMadPhysics) to learn more about the exciting quantum research being done at UW–Madison.
UW–Madison and WQI are members of the Chicago Quantum Exchange, the NSF-funded Quantum Leap Challenge Institute HQAN, and the Department of Energy’s National Quantum Information Science (QIS) Research Center Q-NEXT, three collaborative efforts that are advancing quantum information science and engineering, especially in Great Lakes region. Learn more about the research happening across our collaborations by searching #MidwestQuantum on social media.
* Borrowed from quantum physicist Richard Feynman’s quote: “I think I can safely say that nobody understands quantum mechanics.”