News Archives

Does the behavior of the Higgs boson match the expectations?

Note: This story has been modified slightly from the original, which was published by the CMS Collaboration. Their version has some nice interactive graphics to check out, too!

The standard model of particle physics is our current best theory to describe the most basic building blocks of the universe, the elementary particles, and the interactions among them. At the heart of the standard model is a hypothesis describing how all the elementary particles acquire mass. Importantly, this scheme also envisages the existence of a new type of particle, called the Higgs boson.  It took nearly 50 years, since its postulation, to observe the Higgs boson at the LHC experiments at CERN. It is strongly believed that the Higgs boson, the only scalar particle known to date, is a key to answer some of the questions that standard model cannot answer. Thus a detailed study of the properties of the Higgs boson is the order of the day. Often, specially at the LHC, one of the essential observables concerns the probability that a certain unstable particle is produced momentarily, albeit obeying the laws of nature. In experiments this production cross section is estimated using a specific decay final state of this transient particle in terms of the number of events over a given amount of time. The standard model predicts the cross section for the Higgs boson production as well as the decay rates very precisely. The frequency distribution of a given type of event, as a function of some of the measured variables in the experiment, helps us understand better various aspects of the interactions involved; they are typically lost in the summed or total cross section. Hence measurement of this differential cross section is a powerful tool to vindicate the standard model; also any deviation from the standard model predictions in data would indicate presence of a New Physics.

The Higgs boson is roughly about 125 times more massive than a proton and decays to lighter particles including cascade processes in some cases. Physicists typically use the signatures of stable particles in the detector to trace back suitable decay chains of the Higgs boson. The tau lepton is the heaviest lepton known so far, and as such it is the lepton with strongest ties to the Higgs boson. The probability of a Higgs boson decaying to a pair of tau leptons is reasonably high (about 6%), when compared, for example, to a pair of muons (about 0.02%). But the tau lepton is also an unstable particle and decays quickly to lighter particles always accompanied by its partner, the tau neutrino. Often the decay products from the tau lepton are hadrons producing a shower of particles or jet in the calorimeter system. The tau neutrino goes undetected affecting the accuracy of measurement of the tau lepton energy. It is interesting to study the detailed characteristics of the Higgs boson events using the decay to tau leptons which possess a rest mass of only about 1.4% that of the parent.

profile photo of Andrew Loeliger
Andrew Loeliger

A recent study from the CMS Collaboration, focuses on the events where the Higgs boson decays into a pair of tau leptons using data collected by the experiment between 2016 and 2018. The analysis measures the Higgs boson production cross section as a function of three key variables: the Higgs boson momentum in the direction transverse to the beam, the number of jets produced along with the Higgs boson, and the transverse momentum of the leading jet. New Physics could manifest in excess of events in the frequency distribution of these variables when compared with the standard model predictions.

Says Andrew Loeliger, a UW–Madison physics grad student and one of the lead authors on the study:

The Higgs Boson is the most recent addition to the standard model of particle physics, discovered jointly between the CMS and ATLAS collaborations in 2012, so a big goal of the High Energy Physics field is to make very detailed measurements of its properties, to understand if our predictions are all confirmed, or if there is some kind of new physics or strange properties that might foreshadow or necessitate further discoveries. This work provides, what amounts to, a very fine grained consistency check (alternatively, a search for deviations in the amount) that the Higgs Boson is produced with the amounts/strengths we would expect when categorizing alongside some second interesting property (the transverse momentum of the Higgs Boson is a big one). This type of analysis had not been performed before using the particles we used, so it may open the door for far more precise measurements in places we may not have been able to do before, and a better overall confirmation of the Higgs Boson’s properties.

Other UW–Madison researchers involved in the study include former postdoc Cecile Caillol and Profs. Tulika Bose and Sridhara Dasu.

The analysis employs deep neural networks to exploit simultaneously a variety of tau lepton properties for identifying them with high efficiency. Eventually, to ensure that the selected tau lepton pair is produced from the decay of the Higgs boson and discard those from other processes, such as Z boson decay, the mass of the selected tau pair (m𝝉𝝉 ) is scrutinized. Reconstruction of m𝝉𝝉 , after taking into account the neutrinos involved in the decay as mentioned earlier, required a dedicated algorithm which computes, for each event, a  likelihood function P(m𝝉𝝉) to quantify the level of compatibility of a Higgs boson process.

yellow and orange cones radiate from a common center, with green dots around them
Higgs boson produced in vector boson fusion and decay to tau pair | credit: CMS Collaboration

The Higgs boson typically has more transverse momentum or boost when produced in conjunction with jet(s), compared to the case when it is produced singly. One such event, collected by the CMS detector in 2018 and shown in Figure 1, could correspond to such a boosted Higgs boson decaying to two tau leptons which, in turn, decay hadronically. However, several other less interesting processes could also be the cause of such an event and pose as backgrounds. Such contributions have been measured mostly from the data itself by carefully studying the properties of the jets. Figure 2 shows the good agreement in the m𝝉𝝉 distribution between the prediction and data collected by the CMS experiment for the events with the transverse momentum of the Higgs boson below 45 GeV. The contribution from the Higgs boson process is hardly noticeable due to the overwhelming background.  On the other hand, Figure 3 presents m𝝉𝝉 distribution for the events with highly boosted Higgs boson, when its transverse momentum is above 450 GeV.  Selecting only events with high boost reduces a lot the total number of available events, but  the fraction of the signal events in the collected sample is significantly improved. The data agrees with the sum of predicted contributions from the Higgs boson and all the standard model background processes.

This CMS result presents the first-ever measurement of the differential cross sections for the Higgs boson production decaying to a pair of tau leptons. Run 2 data is allowing us to scrutinize the Higgs boson in the tau lepton decay channel which was only observed a few years back. Future comparison and combination of all Higgs boson decay modes will offer better insights on the interactions of the Higgs boson to different standard model particles. But the story does not end here! The Run 3 of the LHC machine is just around the corner and looking into the future, the high luminosity operation (the HL-LHC) will offer a huge increase in data volume. That could perhaps provide hints of the question if the discovered Higgs boson is the one as predicted by the standard model or if there is any new interaction depicting another fundamental particle contributing to such measurements. That will indeed point to New Physics!

Willy Haeberli remembered as physicist, teacher, and museum supporter

photo of Willy Haeberli
Willy Haeberli in 2013 | Credit: Pupa Gilbert

University of Wisconsin–Madison Professor Emeritus Willy Haeberli passed away October 4, 2021. He was 96.

Born in Zurich, Switzerland on June 17, 1925, Haeberli received his PhD from the University of Basel (Switzerland) in 1952. He joined the faculty of UW–Madison in 1956, retiring in 2005.

Haeberli was a world-class experimental nuclear physicist. His research focused on studying spin effects in nuclear processes and in fundamental interactions. He and his collaborators developed spin-polarized gas targets of atomic hydrogen and deuterium. These “Haeberli cells” were used in many experiments worldwide including the Indiana University Cyclotron Facility, Brookhaven National Laboratory, and DESY Laboratory in Germany, and they were crucial for the success of those experiments.

Haeberli was the Raymond G. Herb Professor of Physics and a Hilldale Professor. He was elected to the American Academy of Arts and Sciences and the National Academy of Sciences, and he won the American Physical Society’s Bonner Prize in nuclear physics in 1979.

In addition to his scientific achievements, Haeberli was an accomplished teacher. He taught physics courses at UW–Madison for 49 years and developed the popular course Physics 109: Physics in the Arts, with Prof. Ugo Camerini. Physics in the Arts has been offered successfully and continuously since 1969, and has been emulated by tens of universities across the country. In the last five years before retiring, he co-taught the course with Prof. Pupa Gilbert. After he retired, Gilbert convinced him to co-write a textbook for Physics in the Arts, published by Academic Press-Elsevier in 2008, and 2011, translated into Chinese and published by Tsinghua University Press in 2011.

“Willy is a giant in my life. He was career changing, life changing, teaching changing, everything. Just the most amazing person I could have ever met,” Gilbert says. “He was, until the last day, my best friend ever, and the closest thing to a father figure I have ever had.”

Gilbert says that Haeberli’s interest in Physics in the Arts may have stemmed from his musician days — he played the flute in a quartet in college — and his wife’s passion for the figurative arts. She continues:

He always loved a lot more the physics of sound compared to the physics of light and color. He and I had feisty disagreements about the physics of light, and I enjoyed every one of them. Very often before classes I would come up with questions, and he could always, always answer them and pacify me. The last one was last spring, when I was teaching sound, and started wondering: Okay, we know that the speed of sound changes dramatically with temperature, but does the frequency change too? In other words, does a tuning fork sound different indoors or outdoors in Madison’s winters? I looked into this seemingly trivial question and could not find any answer I could trust to be right. Until I asked Willy, who (of course!) knew the answer right away, and charmingly explained that the wavelength and the speed of sound vary with temperature for a guitar string or a tuning fork, but the frequency does not. I will miss these elegant answers tremendously!

Haeberli recently made a significant donation to the Ingersoll Physics Museum, which allows for new exhibits to be developed, allows for current exhibits to be improved, and helps fund the docents program which provides tours for visiting school groups. He and his late wife, Dr. Gabriele Haberland, also supported the Madison Museum of Contemporary Art, UW­–Madison’s Chazen Museum, and Tandem Press with generous gifts.

Several current and emeritus department members shared their memories of Willy. Please visit the Willy Haeberli tribute page to read those stories. The Wisconsin State Journal also ran an obituary.

Many thanks to Profs. Pupa Gilbert and Baha Balantekin for helping with this obituary

Physics has lots of winners in the Cool Science Image contest!

This story is largely adapted from UW’s announcement of the 2021 Cool Science Image contest winners.

Ten images and two videos created by University of Wisconsin–Madison students, faculty and staff — including two images from Physics and one from IceCube — have been named winners of the 2021 Cool Science Image Contest.

The winners from physics include Joel Siegel, Margaret Fortman, and Gregory Holdman; from IceCube, Yuya Makino.

A panel of nine experienced artists, scientists and science communicators judged the scientific content and aesthetic and creative qualities of scores of images and videos entered in the 11th annual competition. The winning entries showcase animals and plants, the invisibly small structures all around us, and stars and nebulae millions of millions of miles away.

An exhibit featuring the winners is open to the public at the McPherson Eye Research Institute’s Mandelbaum and Albert Family Vision Gallery on the ninth floor of the Wisconsin Institutes for Medical Research, 111 Highland Ave., through December. A reception — open to the public — for the contest entrants will be held at the gallery on Oct. 7 from 4:30 to 6:30 p.m.

Winning submissions were created with point-and-shoot digital cameras, cutting-edge microscopes, and telescopes of both the backyard and mountaintop variety.

Because sometimes, there’s no substitute for the visual.

“An image often can convey meaning more effectively than words,” says Ahna Skop, a longtime contest judge, artist and UW–Madison professor of genetics and active ambassador for science. “We know from marketing and education research that adding a picture with words to a slide increases retention of knowledge by 65 percent. The visual communication of science is critical for the transference of knowledge broadly.”

The winning entries from Physics/IceCube

 

greyscale abstract image of things that appear to look like 3D towers in the shape of snowflakes
By varying the exact size and shape of these micrometer-wide, star-shaped pillars etched into a silicon wafer, researchers can carefully manipulate light passing through a lens to correct for aberrations that would otherwise focus different wavelengths of light on different points in space. | Gregory Holdman, graduate student, Physics, focused ion beam and scanning electron microscope

 

image looks like a black and white maze
Mazes of tiny structures less than 15 billionths of a meter across and made of some of the smallest ribbons of graphene — layers of carbon just a single atom thick — ever fabricated represent an important step toward graphene-based telecommunications devices. | Joel Siegel and Margaret Fortman, graduate students, Physics; Jian Sun, graduate student, Materials Science; Jonathan Dwyer, PhD alumnus, Chemical Engineering, scanning electron microscope

 

a bundled up person in the snow with the neon green glow of an aurora overhead
A “winterover” — one of the two staff members who stay through the minus-100-degree Fahrenheit nights of Antarctica’s coldest months — hikes underneath the stars and aurora to the South Pole home of IceCube, a UW–Madison-led neutrino telescope frozen in a cubic kilometer of ice. | Yuya Makino, assistant scientist, IceCube Neutrino Observatory, digital camera

New department chair looks to build off past strengths in move toward future

profile photo of Mark Eriksson
Mark Eriksson

The Department of Physics at the University of Wisconsin–Madison is pleased to announce that Mark Eriksson, the John Bardeen Professor of Physics, has been named our new department Chair. His three-year term began in August 2021. Eriksson succeeds Sridhara Dasu, who served as Chair from 2017-2021.

“I’m honored to lead our department after Sridhara’s very successful past four years,” Eriksson says.

Eriksson highlights the importance of expanding and enhancing our strong teaching at both the undergraduate and graduate level. “Physics both sparks our imagination as people and provides outstanding benefits to society,” he says. “Our teaching — both broadly and to specialists — is one of our highest impact activities.”

The department’s teaching success goes hand in hand with its research excellence, and Eriksson emphasizes that a critical priority is expansion of research by both building on past successes and growing in important new directions.

A third pillar of the department is outreach, which connects physics at UW–Madison with audiences all around the state of Wisconsin and is a great example of the many ways the department fulfills the Wisconsin Idea. “I’m extremely excited that our department is restarting The Wonders of Physics Traveling Show, with which we aim to reach every part of the state,” Eriksson says.

Prior to joining the University of Wisconsin in 1999, Eriksson received his Ph.D. from Harvard University in 1997 and was a postdoctoral member of technical staff at Bell Labs from 1997-1999. In his own research, he studies semiconductor-based quantum computing and nanoscience. Eriksson is a fellow of the American Physical Society and the American Association for the Advancement of Science.

Chicago State University students gain quantum experience through HQAN summer internships

profile photos of Anosh Wasker, Dominique Newell, Gabrielle Jones-Hall, and Ryan Stempek

This story was adapted from one originally published by HQAN

Over the past summer, the NSF Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN) offered a 12-week “Research Experiences for CSU Students” internship opportunity that provided students and recent graduates from Chicago State University (CSU) with virtual research experiences addressing quantum science topics. In an August 20 online poster session, students presented the results of their summer projects to HQAN’s university and industry partners.

Mallory Conlon, HQAN’s outreach program coordinator and the quantum science outreach program coordinator with the UW–Madison department of physics, explained that this year’s program was the pilot offering. “We wanted to make sure we had the support and activity structures right before expanding this to more [minority serving institutions] (MSIs) and other underrepresented groups across the Midwest. We’re currently evaluating the program and aim to develop an expanded internship for summer 2022.” For the pilot, CSU was chosen as the sole participating MSI because of its proximity to the University of Chicago (one of HQAN’s three university partners), and because of HQAN staff connections to CSU.

The posters presented on August 20 included Anosh Wasker’s “Quantum Games for Pedagogy” (advised by Russell Ceballos of the Chicago Quantum Exchange); Dominique Newell’s “Super-Resolution Microscopy Using Nitrogen Vacancy Centers in Diamond to Analyze the Optical Near Field Diffraction Limit” (advised by Shimon Kolkowitz of the University of Wisconsin–Madison); Gabrielle Jones-Hall’s “Demonstrating Entanglement” (advised by Paul Kwiat of the University of Illinois at Urbana-Champaign (UIUC)); and Ryan Stempek’s “Quantum vs. Classical Boltzmann Machines for Learning a Quantum Circuit” (advised by Bryan Clark of UIUC).

Wasker is pursuing a Master’s at CSU; his long-term goals are to go for a PhD and then work in industry. Over the summer, he developed an air-hockey-inspired computer game that teaches players some of the counterintuitive concepts involved in quantum—particularly the Hong-Ou-Mandel (HOM) effect. He says he’s passionate about quantum science and has noticed that many opportunities are coming up in the field, but that it’s difficult for people to find “access points” into learning about this intimidating topic so that they can seize those opportunities. His summer project was inspired by his belief that learning through play is a powerful way to gain understanding.

Newell recently graduated from CSU with a BS in physics, with a minor in chemistry. She spent the summer studying the propagation of light through a laser beam that travels through a nitrogen vacancy center in diamond, as observed through a confocal microscope. The goal was to locate the zero intensity points above and below the focal plane of a Gaussian beam by using its own electromagnetic field.

Jones-Hall is now in graduate school at Mississippi Valley State University. She’s working towards a Master’s in Bioinformatics but plans to return to quantum after completing that degree, so her internship project—which worked on developing a quantum-themed escape room designed to teach players the concept of quantum entanglement—will be relevant to her later work.

Stempek will graduate in December with a Master’s in computer science and then work in industry. His summer project aimed to show that a quantum Restricted Boltzmann Machine (Q-RBM) has the potential to learn the probability distribution over a set of inputs more accurately than a classical RBM (C-RBM) can for the same circuit. He says the internship was a great opportunity for him to further build his Python skills and problem-solve through the ups and downs of research. “[It] was really beneficial,” he says, “and actually, moving into industry, I feel that I’ll have a greater sense of self-confidence… It was a great experience!”

HQAN is a partnership among the University of Chicago, UIUC, and the University of Wisconsin–Madison and is funded by the National Science Foundation.

IceCube to appear in BBC and PBS documentaries

This story was originally published by IceCube.

The IceCube Neutrino Observatory, a massive astroparticle physics experiment located at the South Pole, will be featured in two upcoming documentaries about neutrinos produced for the BBC and PBS NOVA.

Sometimes called the world’s biggest and strangest telescope, IceCube comprises over 5,000 light sensors deployed in a cubic kilometer of ice at the South Pole. Despite its inhospitable environment, the South Pole’s abundance of ice makes it an ideal location for detecting neutrinos: tiny fundamental particles that could reveal unseen parts of the universe.

For these documentaries, IceCube staff from the experiment’s headquarters at the Wisconsin IceCube Particle Astrophysics Center (WIPAC), a research center of the University of Wisconsin–Madison, captured video footage at the South Pole. During the austral summer of 2019, Kael Hanson, John Hardin, Matt Kauer, John Kelley, and Yuya Makino recorded video at the bottom of the world as they conducted annual maintenance and other work on the observatory. The footage was then sent “up north” for use in the two different documentaries.

The BBC documentary, “Neutrino: Hunting the Ghost Particle,” will premiere on BBC Four on Wednesday, September 22 from 9:00 – 10:00 pm BST. It is described as “an astonishing tale of perseverance and ingenuity that reveals how scientists have battled against the odds for almost a century to detect and decode the neutrino, the smallest and strangest particle of matter in the universe.” The documentary will feature footage and interviews from IceCube and will discuss the experiment’s role in neutrino astronomy.

PBS NOVA will feature IceCube and its science in its “Particles Unknown” documentary premiering on Wednesday, October 6 at 9:00 pm CDT. IceCube will appear near the end of the program, which is also about the hunt for neutrinos, “the universe’s most common—yet most elusive and baffling—particle,” and includes an interview with Hanson, who is also IceCube’s director of operations and the director of WIPAC.

Learn more about IceCube and neutrinos at IceCube’s website.

The IceCube Neutrino Observatory is funded primarily by the National Science Foundation (OPP-1600823 and PHY-1913607) and is headquartered at the Wisconsin IceCube Particle Astrophysics Center, a research center of UW–Madison in the United States. IceCube’s research efforts, including critical contributions to the detector operation, are funded by agencies in Australia, Belgium, Canada, Denmark, Germany, Japan, New Zealand, Republic of Korea, Sweden, Switzerland, the United Kingdom, and the United States. The IceCube EPSCoR Initiative (IEI) also receives additional support through NSF-EPSCoR-2019597. IceCube construction was also funded with significant contributions from the National Fund for Scientific Research (FNRS & FWO) in Belgium; the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG) in Germany; the Knut and Alice Wallenberg Foundation, the Swedish Polar Research Secretariat, and the Swedish Research Council in Sweden; and the University of Wisconsin–Madison Research Fund in the U.S.

 

New 3D integrated semiconductor qubit saves space without sacrificing performance

Small but mighty, semiconducting qubits are a promising area of research on the road to a fully functional quantum computer. Less than one square micron, thousands of these qubits could fit into the space taken up by one of the current industry-leading superconducting qubit platforms, such as IBM’s or Google’s.

For a quantum computer on the order of tens or hundreds of qubits, that size difference is insignificant. But to get to the millions or billions of qubits needed to use these computers to model quantum physical processes or fold a protein in a matter of minutes, the tiny size of the semiconducting qubits could become a huge advantage.

Except, says Nathan Holman, who graduated from UW–Madison physics professor Mark Eriksson’s group with a PhD in 2020 and is now a scientist with HRL Laboratories, “All those qubits need to be wired up. But the qubits are so small, so how do we get the lines in there?”

In a new study published in NPJ Quantum Information on September 9, Holman and colleagues applied flip chip bonding to 3D integrate superconducting resonators with semiconducting qubits for the first time, freeing up space for the control wires in the process. They then showed that the new chip performs as well as non-integrated ones, meaning that they solved one problem without introducing another.

If quantum computers are to have any chance of outperforming their classical counterparts, their individual qubit units need to be scalable so that millions of qubits can work together. They also need an error correction scheme such as the surface code, which requires a 2D qubit grid and is the current best-proposed scheme.

a three-chip sandwich showing the device architecture.
Proposed approach: the 3D integrated device consists of a superconducting die (top layer) and a semiconducting qubit die (middle layer) brought together though a technique known as flip chip integration. The bottom layer, proposed but not studied experimentally in this work, will serve to enable wiring and readout electronics. This study is the first time that semiconducting qubits (middle layer) and superconducting resonators (top layer) have been integrated in this way, and it frees up space for the wiring needed to control the qubits. | Credit: Holman et al., in NPJ Quantum Information

To attain any 2D tiled structure with current semiconducting devices, it quickly gets to the point where 100% of available surface area is covered by wires — and at that point, it is physically impossible to expand the device’s capacity by adding more qubits.

To try to alleviate the space issue, the researchers applied a 3D integration method developed by their colleagues at MIT. Essentially, the process takes two silicon dies, attaches pillars of the soft metal indium placed onto one, aligns the two dies, and then presses them together. The result is that the wires come in from the top instead of from the side.

“The 3D integration helps you get some of the wiring in in a denser way than you could with the traditional method,” Holman says. “This particular approach has never been done with semiconductor qubits, and I think the big reason why it hadn’t is that it’s just a huge fabrication challenge.”

profile photo of Mark Eriksson
Mark Eriksson
profile photo of Nathan Holman
Nathan Holman

In the second part of their study, the researchers needed to confirm that their new design was functional — and that it didn’t add disadvantages that would negate the spacing success.

The device itself has a cavity with a well-defined resonant frequency, which means that when they probe it with microwave photons at that frequency, the photons transmit through the cavity and are registered by a detector. The qubit itself is coupled to the cavity, which allows the researchers to determine if it is functioning or not: a functioning qubit changes the resonant frequency, and the number of photons detected goes down.

They probed their 3D integrated devices with the microwave photons, and when they expected their qubits to be working, they saw the expected signal. In other words, the new design did not negatively affect device performance.

“Even though there’s all this added complexity, the devices didn’t perform any worse than devices that are easier to make,” Holman says. “I think this work makes it conceivable to go to the next step with this technology, whereas before it was very tricky to imagine past a certain number of qubits.”

Holman emphasizes that this work does not solve all the design and functionality issues currently hampering the success of fully functional quantum computers.

“Even with all the resources and large industry teams working on this problem, it is non-trivial,” Holman says. “It’s exciting, but it’s a long-haul excitement. This work is one more piece of the puzzle.”

The article reports that this work was sponsored in part by the Army Research Office (ARO) under Grant Number W911NF-17-1-0274 (at UW­–Madison) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002 (at MIT Lincoln Laboratory).

 

Balantekin named co-PI on NSF grant to solve cosmic mystery

This story has been modified from one originally published by New York Institute of Technology. 

A team of University of Wisconsin–Madison and New York Institute of Technology physicists has secured a grant from the National Science Foundation (NSF) in an attempt to solve one of science’s greatest mysteries: how the universe formed from stardust.

Many of the universe’s elements, including the calcium found in human bones and iron in skyscrapers, originated from ancient stars. However, scientists have long sought to understand the cosmic processes that formed other elements—those with undetermined origins. Now, UW–Madison professor of physics Baha Balantekin and co-principal investigator Eve Armstrong assistant professor of physics at New York Institute of Technology, will perform the first known research project that uses weather prediction techniques to explain these events. Their revolutionary work will be funded by a two-year $299,998 NSF EAGER grant, an award that supports early-stage exploratory projects on untested but potentially transformative ideas that could be considered “high risk/high payoff.”

While the Big Bang created the first and lightest elements (hydrogen and helium), the next and heavier elements (up to iron on the periodic table) formed later inside ancient, massive stars. When these stars exploded, their matter catapulted into space, seeding that space with elements. Eventually, stardust matter from these supernovae formed the sun and planets, and over billions of years, Earth’s matter coalesced into the first life forms. However, the origins of elements heavier than iron, such as gold and copper, remain unknown. While they may have formed during a supernova explosion, current computational techniques render it difficult to comprehensively study the physics of these events. In addition, supernovae are rare, occurring about once every 50 years, and the only existing data is from the last explosion in 1987.

Large information-rich data sets are obtained from increasingly sophisticated experiments and observations on complicated nonlinear systems. The techniques of Statistical Data Assimilation (SDA) have been developed to handle very nonlinear systems with sparsely sampled data. SDA techniques, akin to the path integral methods commonly used in physics, are used in fields ranging from weather prediction to neurobiology. Armstrong and Balantekin will apply the SDA methods to the vast amount of data accumulated so far in neutrino physics and astrophysics.

With simulated data, in preparation for the next supernova event, the team will use data assimilation to predict whether the supernova environment could have given rise to some heavy elements. If successful, these “forecasts” may allow scientists to determine which elements formed from supernova stardust.

This project will provide an opportunity to the Physics graduate students interested in neutrinos to master an interdisciplinary technique with many other applications.

“Physicists have sought for years to understand how, in seconds, giant stars exploded and created the substances that led to our existence. A technique from another scientific field, meteorology, may help to explain an important piece of this puzzle that traditional tools render difficult to access,” says Armstrong.

The NSF is an independent agency of the U.S. government that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National Institutes of Health. NSF funding accounts for approximately 27 percent of the total federal budget for basic research conducted at U.S. colleges and universities.

This project is funded by NSF EAGER Award ID No. 2139004

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF.

The Wonders of Physics ready to hit the road

The Wonders of Physics traveling show is back! After a five-year hiatus, the department is pleased to announce that we have hired a full-time outreach specialist and restarted the program.

profile photo of Haddie McLean
Haddie McLean

Haddie McLean, a former meteorologist with WISC-TV / Channel 3 in Madison, began her new role as the Wonders of Physics outreach coordinator on August 9. After a 21-year TV career, McLean says she was looking for a new challenge — and any job that didn’t require her to wake up at 2am was just a bonus.

“I love talking to people about science. And I love seeing kids’ faces light up when they understand a topic or when they learn something new,” McLean says. “I was able to do a little bit of that in my job in TV. But in this position, I’ll get to do a ton more, and that’s what drew me to it.”

McLean’s primary role with The Wonders of Physics will be to further develop and perform the traveling show. She will also play a lead role in the development and performance of the annual shows in February, as well as participating in science outreach events and connecting with Wisconsin science teachers.

The Wonders of Physics traveling show started in the late 1980s as an offshoot of The Wonders of Physics annual shows, which first ran in 1984. Two graduate students at the time, David Newman and Christopher Watts, approached Prof. Clint Sprott — the creator of The Wonders of Physics — and suggested that they take the show on the road.

Over the years, The Wonders of Physics traveling show has gone from an all-volunteer, graduate student-led effort to one that has employed part- or full-time outreach specialists. Past funding has been provided by NSF and DOE. Now, thanks to the support of generous donors — including a successful Day of the Badger fundraising campaign — the department expects that the traveling show will be run by a full-time staff member for years to come.

“I’d like to make this show accessible to all ages, all walks of life,” McLean says. “I’d like to hit all areas of the state, if possible, and bring the university to the kids that wouldn’t otherwise get a chance to experience all that our campus has to offer.”

McLean is already busy prepping the show and hopes to be in schools by late fall 2021 (if university and school district COVID-19 policies permit it). She expects to have a general show available that is as hands-on and interactive as possible. She also plans to make the show customizable as needed, where she can work with teachers to focus the performance on the specific areas of physics that they are teaching at the time.

“My hope for the traveling show is that it’s fun and engaging, gets kids excited, and helps spark an interest in the next generation of scientists,” McLean says.

Sprott, now an emeritus professor with the department who still stars in the annual shows each February, is enthusiastic that McLean will be involved in those shows and that she is reviving the traveling show.

“After several difficult years, I’m delighted that Haddie McLean has joined us to head the Department’s nearly 40-year tradition of physics outreach and public education for people of all ages throughout Wisconsin and beyond,” Sprott says.

Anyone interested in scheduling The Wonders of Physics traveling show can email wonders@physics.wisc.edu or visit wonders.physics.wisc.edu for more information.

The shows are free of charge, but donations are encouraged.

Related: See the winning entries from The Wonders of Physics 2021 video contest!

 

Magnetic fields implicated in the mysterious midlife crisis of stars

a brightly colored sun with a cutout showing into the core, with lines suggesting the spinning motion
Artist’s impression of the spinning interior of a star, generating the stellar magnetic field. This image combines a dynamo simulation of the Sun’s interior with observations of the Sun’s outer atmosphere, where storms and plasma winds are generated. | Credit:
CESSI / IISER Kolkata / NASA-SVS / ESA / SOHO-LASCO

This post was originally published by the Royal Astronomical Society. UW–Madison physics graduate student Bindesh Tripathi is the lead author of the scientific publication.

Middle-aged stars can experience their own kind of midlife crisis, experiencing dramatic breaks in their activity and rotation rates at about the same age as our Sun, according to new research published today in Monthly Notices of the Royal Astronomical Society: Letters. The study provides a new theoretical underpinning for the unexplained breakdown of established techniques for measuring ages of stars past their middle age, and the transition of solar-like stars to a magnetically inactive future.

Astronomers have long known that stars experience a process known as ‘magnetic braking’: a steady stream of charged particles, known as the solar wind, escapes from the star over time, carrying away small amounts of the star’s angular momentum. This slow drain causes stars like our Sun to gradually slow down their rotation over billions of years.

In turn, the slower rotation leads to altered magnetic fields and less stellar activity – the numbers of sunspots, flares, outbursts, and similar phenomena in the atmospheres of stars, which are intrinsically linked to the strengths of their magnetic fields.

profile photo of Bindesh Tripathy
Bindesh Tripathi

This decrease in activity and rotation rate over time is expected to be smooth and predictable because of the gradual loss of angular momentum. The idea gave birth to the tool known as ‘stellar gyrochronology’, which has been widely used over the past two decades to estimate the age of a star from its rotation period.

However recent observations indicate that this intimate relationship breaks down around middle age. The new work, carried out by Bindesh Tripathi at UW–Madison and the Indian Institute of Science Education and Research (IISER) Kolkata, India, provides a novel explanation for this mysterious ailment. Prof. Dibyendu Nandy, and Prof. Soumitro Banerjee of IISER are co-authors.

Using dynamo models of magnetic field generation in stars, the team show that at about the age of the Sun the magnetic field generation mechanism of stars suddenly becomes sub-critical or less efficient. This allows stars to exist in two distinct activity states – a low activity mode and an active mode. A middle aged star like the Sun can often switch to the low activity mode resulting in drastically reduced angular momentum losses by magnetized stellar winds.

Prof. Nandy comments: “This hypothesis of sub-critical magnetic dynamos of solar-like stars provides a self-consistent, unifying physical basis for a diversity of solar-stellar phenomena, such as why stars beyond their midlife do not spin down as fast as in their youth, the breakdown of stellar gyrochronology relations, and recent findings suggesting that the Sun may be transitioning to a magnetically inactive future.”

The new work provides key insights into the existence of low activity episodes in the recent history of the Sun known as grand minima – when hardly any sunspots are seen. The best known of these is perhaps the Maunder Minimum around 1645 to 1715, when very few sunspots were observed.

The team hope that it will also shed light on recent observations indicating that the Sun is comparatively inactive, with crucial implications for the potential long-term future of our own stellar neighbor.