Rogerio Jorge receives first grant as a professor

profile photo of Rogerio Jorge
Rogerio Jorge

Congrats to Prof. Rogerio Jorge who was awarded his first grant as a professor! The three-year, $500,000 National Science Foundation grant, titled “Moment Approach to Multiscale Plasmas,” will be used to fund a graduate student and postdoc on the project.

“Astrophysical plasmas appear in more than 90% of the universe — for example, on the surface of the sun or in the intergalactic medium — and there’s still a lot of things that we don’t understand about them,” Jorge says. “We need to study phenomena in astrophysical plasmas and try to replicate them numerically to better understand them.”

Jorge’s work will focus on the so-called collisionless regime of these plasmas, where particles travel for a long time before experiencing any collision. He says this regime is difficult to model, both experimentally and numerically.

“We’ve proposed a new method that has two parts. The first one is to try to simplify the equations using a reduced model, called a moment model,” Jorge says. “Second, it’s using machine learning to reduce it even more.”

Jorge and his team have the moment model theory ready to be applied. For the machine learning step, they will use JAX, an open-source machine learning framework developed by the DeepMind team at Google that many physicists are starting to use in their research.

Jorge plans to investigate one intriguing phenomenon in collisionless plasmas: how the acceleration of super-thermal particles occurs versus thermodynamic heating. This will help scientists understand how charged particles in a plasma become energized, a phenomenon applicable to both laboratory and astrophysical plasmas. He will also apply this new approach to the problem of magnetic reconnection in collisionless plasmas, a problem he says is difficult to model due to the topology changes that occur in short time scales.

“We need new models to try to handle these complex scenarios without spending months and months on a single simulation,” Jorge says.

NSF grants require investigators to address the broader impacts of their research, defined as “the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.” Jorge plans to work with the department’s Wonders of Physics outreach program to create realistic movies that simulate these astrophysical plasma environments. For example, he hopes to show, in detail, what is happening with magnetic reconnection in auroras or around the surface of the sun, with both using the new code developed through his research.

For this research, Jorge is collaborating with experimentalists at UW-Madison’s WiPPL facilities, and computational plasma physicists at UCLA, MIT, and Princeton.

Welcome, Professor Vladimir Zhdankin!

profile photo of Vladimir Zhdankin
Vladimir Zhdankin (credit: Flatiron Institute)

Theoretical plasma astrophysicist Vladimir Zhdankin ‘11, PhD ’15, returns to UW–Madison as an assistant professor of physics on January 1, 2024. As a student, Zhdankin worked with Prof. Stas Boldyrev on solar wind turbulence and basic magnetohydrodynamic turbulence, which are relevant for near-Earth types of space plasmas. After graduating, Zhdankin began studying plasma astrophysics of more extreme environments. He first completed a postdoc at CU-Boulder, then a NASA Einstein Fellowship at Princeton University. He joins the department from the Flatiron Institute in New York, where he is currently a Flatiron Research Fellow.

Please give an overview of your research. 

These days, most of my interest is in the field of plasma astrophysics — the application of plasma physics to astrophysical problems. Much of the matter in the universe is in a plasma state, such as stars, the matter around black holes, and the interstellar medium in the galaxy. I’m interested in understanding the plasma processes in those types of systems. My focus is particularly on really high energy systems, like plasmas around black holes or neutron stars, which are dense objects where you could get extreme plasmas where relativistic effects are important. The particles are traveling at very close to the speed of light, and there’s natural particle acceleration occurring in these systems. They also radiate intensely, you could see them from halfway across the universe. There’s a need to know the basic plasma physics in these conditions if you want to interpret observations of those systems. A lot of my work involves doing plasma simulations of turbulence in these extreme parameter regimes.

What are one or two research projects you’ll focus on the most first?

One of them is on making reduced models of plasmas by using non-equilibrium statistical mechanical ideas. Statistical mechanics is one of the core subjects of physics, but it doesn’t really seem to apply to plasmas very often. This is because a lot of plasmas are in this regime that’s called collisionless plasma, where they are knocked out of thermal equilibrium, and then they always exist in a non-thermal state. That’s not what standard statistical mechanics is applicable to. This is one of the problems that I’m studying, whether there is some theoretical framework to study these non-equilibrium plasmas, to understand basic things like: what does it mean for entropy to be produced in these types of plasmas? The important application of this work is to explain how are particles accelerated to really high energies in plasmas. The particle acceleration process is important for explaining cosmic rays which are bombarding the Earth, and then also explaining the highest energy radiation which we see from those systems.

Another thing I’m thinking about these days is plasmas near black holes. In the center of the Milky Way, for example, there’s a supermassive black hole called Sagittarius A*, which was recently imaged a year or two ago by the Event Horizon Telescope. It’s a very famous picture. What you see is the shape of the black hole and then all the plasma in the vicinity, which is in the accretion disk. I’m trying to understand the properties of that turbulent plasma and how to model the type of radiation coming out of the system. And then also whether we should expect neutrinos to be coming out, because you would need to get very high energy protons in order to produce neutrinos. And it’s still an open question of whether or not that happens in these systems.

What attracted you to UW–Madison?

It’s just a perfect match in many ways. It really feels like a place where I’m confident that I could succeed and accomplish my goals, be an effective mentor, and build a successful group. It has all the resources I need, it has the community I need as a plasma physicist to interact with. I think it has a lot to offer to me and likewise, I have a lot to offer to the department there. I’m also really looking forward to the farmers’ market and cheese and things like that. You know, just the culture there.

What is your favorite element and/or elementary particle?

I like the muon. It is just a heavy version of the electron, I don’t remember, something like 100 times more massive or so. It’s funny that such particles exist and this is like the simplest example of one of those fundamental particles which we aren’t really familiar with, it’s just…out there. You could imagine situations where you just replace electron with a muon and then you get slightly different physics out of it.

What hobbies and interests do you have?

They change all the time. But some things I’ve always done: I like running, skiing, bouldering indoors, disk golf, racquet sports, and hiking. (Cross country or downhill skiing?) It’s honestly hard to choose which one I prefer more. In Wisconsin, definitely cross country. If I’m in real mountains, the Alps or the Rockies, then downhill is just an amazing experience.

Zweibel receives Astronomical Society of the Pacific’s most prestigious award

This post is adapted from an Astronomical Society of the Pacific press release

The Astronomical Society of the Pacific (ASP) has awarded the 2022 Catherine Wolfe Bruce Gold Medal to Ellen Zweibel. It is the most prestigious award given by ASP.

profile photo of Ellen Zweibel
Ellen Zweibel, W. L. Kraushaar professor of astronomy and physics (Photo by Althea Dotzour / UW–Madison)

Zweibel, the William L. Kraushaar professor of astronomy and physics at UW–Madison, was recognized for her contributions to the understanding of astrophysical plasmas, especially those associated with the Sun, stars, galaxies, and galaxy clusters. She has also made major contributions in linking plasma characteristics and behaviors observed in laboratories to astrophysical plasma phenomena occurring in the universe.

Most plasma effects in astrophysical systems are due to an embedded magnetic field. Many of them can be grouped into a small number of basic physical processes: how magnetic fields are generated, how they exchange energy with their environments (sometimes on explosively fast timescales), their role in global instabilities, how they cause a tiny fraction of thermal particles to be accelerated to relativistic energies, and how they mediate the interaction of these relativistic particles (cosmic rays) with their gaseous environments through waves and instabilities on microscales. Although all these processes occur in laboratory plasmas, it is in natural plasmas that they take their most extreme forms. Zweibel and her students and postdocs have used analytical theory and numerical simulations to study the generation and evolution of magnetic fields in the Sun and other stars, in galaxies, and in galaxy clusters, and have researched the effects of high energy cosmic ray particles in all of these environments. Their most recent work centers on the role of cosmic rays in star formation feedback: the self-regulation of the star formation rate in galaxies through energy and momentum input to the ambient medium by the stars themselves.

a gold medal that says astronomical society of the pacific around the rim and has an antiquity-looking woman and other details
The Catherine Wolfe Bruce Gold Medal (photo from the Astronomical Society of the Pacific)

Zweibel has authored over 242 refereed publications with over 8,000 citations. In 2016 she was awarded the American Physical Society’s James Clerk Maxwell Prize for Plasma Physics “For seminal research on the energetics, stability, and dynamics of astrophysical plasmas, including those related to stars and galaxies, and for leadership in linking plasma and other astrophysical phenomena.” She is a member of the National Academy of Sciences.

The Astronomical Society of the Pacific’s Catherine Wolfe Bruce Gold Medal was established in 1898 by Catherine Wolfe Bruce, an American philanthropist and patroness of astronomy. The ASP presents the medal annually to a professional astronomer in recognition of a lifetime of outstanding achievement and contributions to astrophysics research. It was first awarded in 1898 to Simon Newcomb. Previous recipients of the Bruce Medal include Giovanni V. Schiaparelli (1902), Edwin Hubble (1938), Fred Hoyle (1970), and Vera Rubin (2003)