Madison Symmetric Torus operates stable plasma at ten times the Greenwald Limit

If net-positive fusion energy is to ever be achieved, density is key: the more atomic nuclei crashing into each other the more efficient the reaction will be. Nearly 40 years ago, Martin Greenwald identified a density limit above which tokamak plasmas become unstable, and the so-called Greenwald limit has at best been exceeded by a factor of two in the ensuing decades. 

In a new study published July 29 in Physical Review Letters, physicists at the University of Wisconsin–Madison produced a tokamak plasma that is stable at 10 times the Greenwald limit. The findings may have implications for tokamak fusion reactors, though the researchers caution that their plasma is not directly comparable to that in a fusion reactor. 

MST is shown, it is a donut-shaped metal device that is tens of feet in diameter and has hundreds of wires coming in and out of it
The Madison Symmetric Torus (MST). credit: Noah Hurst

“Tokamak devices are considered a leading contender in the race to build a nuclear fusion reactor that generates power in the same way as the sun,” says Noah Hurst, a scientist with the Wisconsin Plasma Physics Laboratory (WiPPL) and lead author on the study. “Our discovery of this unusual ability to operate far above the Greenwald limit is important for boosting fusion power production and preventing machine damage.”  

Tokamaks are toroidal devices, basically hollow metal donuts that churn ionized plasma through the tube by applying both a magnetic field and an electrical current. This shape has been shown to be particularly adept at confining the plasma, which is required to reach the high temperature and density needed for fusion. But the design can also lead to instabilities in the plasma: as its density increases, the plasma becomes more turbulent, causing the plasma to give up all its energy to the wall and cool off. 

The device that the WiPPL team used in this new study is the Madison Symmetric Torus, or MST. For many years, MST has operated as one of the leading programs studying the reversed field pinch, a toroidal configuration closely related to the tokamak. MST was designed to anticipate operation as a tokamak, allowing direct comparison of the two toroidal configurations in the same device. Unlike other tokamaks, the metal donut that houses the MST plasmas is thick and highly conducting, allowing for more stable operation..  

In 2018, MST scientists received National Science Foundation funding to build power supplies that are programmable, facilitating easier access to a range of toroidal plasma configurations, from tokamak to reversed field pinch. Hurst was hired in 2019 to study MST plasmas in tokamak mode with the new power supply.  

“My job was to try to find ways to make the plasma go unstable,” Hurst says. “I tried, and I found that, well, in many cases, it doesn’t. It was surprising.”

a graph with time [ms] on the x axis and electron density) aka plasma density on the y axis. Several data lines, given in a rainbow of colors, all go up within the first few ms, hold steady for up to 40ms, and then drop down to 0. A dotted line, representing the Greenwald limit, is shown around 0.75 on the y axis; all but one of the data lines goes well above that dotted line, up to 10x the value of the Greenwald limit
WiPPL scientists were able to experimentally create a stable plasma 10x greater than the Greenwald limit (the dashed horizontal line).
Hurst and colleagues looked into plasma density, trying to destabilize the plasma by puffing in more and more gas. They set the power supply to provide whatever voltage was needed to maintain a steady 50000 amps of current in each plasma (as plasma density increases, it becomes more resistive, and more voltage is needed to keep the current steady). They measured the achieved plasma density with interferometers viewing the plasma along 11 different lines of sight. 

The Greenwald limit is just the ratio of the plasma density to the product of the plasma current and plasma size, a simple metric that allows comparison of different devices and operating conditions. Since the limit was defined, only a handful of devices have operated above it, and by at most a factor of two. 

“Here, we were at a factor of ten,” Hurst says. “Future reactor-scale tokamaks will likely need to operate near or above the Greenwald limit, so if we can better understand what’s causing the density limit and understand the physics of how we got to ten times the limit, then maybe we have a shot at doing something about it.” 

Though the researchers feel confident in their results, they are unexpected. The team is actively exploring explanations.  

“The first thing we would ask is, what’s different about our machine relative to other machines?” Hurst says. “MST is very different because it was designed with a thicker wall than most tokamaks. Also, most tokamaks produce lower-resistance plasmas, so they don’t need these large voltages like we did in order to run.”

profile photo of Noah Hurst
Noah Hurst

Hurst also emphasizes that these results are unlikely to be directly applicable to fusion reactors, such as ITER and others that are being built in the hopes of being the first net-positive energy production tokamaks. But he and the team are cautiously optimistic.

“Our results were obtained in a low magnetic field, low temperature plasma, which is not capable of fusion power production. Still, we were the first ones to be able to do this, and you have to start somewhere,” Hurst says. “We’re going to keep studying these plasmas, and we think that what we learn might help higher-performance fusion devices to operate at the higher densities they need to be successful.”  

This study was supported by the U.S. Department of Energy (DE-SC0020245); by the Wisconsin Plasma Physics Laboratory, a research facility supported by the U.S. DOE Office of Fusion Energy Sciences under contract DE-SC0018266; and by a National Science Foundation Major Research Instrumentation grant (PHY 1828159).  

First plasma marks major milestone in UW–Madison fusion energy research

a cyan blue cloud of light illuminates the majority of the shot

A fusion device at the University of Wisconsin–Madison generated plasma for the first time Monday, opening a door to making the highly anticipated, carbon-free energy source a reality.

Over the past four years, a team of UW–Madison physicists and engineers has been constructing and testing the fusion energy device, known as WHAM (Wisconsin HTS Axisymmetric Mirror) in UW’s Physical Sciences Lab in Stoughton. It transitioned to operations mode this week, marking a major milestone for the yearslong research project that’s received support from the U.S. Department of Energy.

“The outlook for decarbonizing our energy sector is just much higher with fusion than anything else,” says Cary Forest, a UW–Madison physics professor who has helped lead the development of WHAM. “First plasma is a crucial first step for us in that direction.”

WHAM started in 2020 as a partnership between UW–Madison, MIT and the company Commonwealth Fusion Systems. Now, WHAM will operate as a public-private partnership between UW–Madison and spinoff company Realta Fusion Inc., positioning it as major force for fusion research advances at the university.

Read the full story

 

Elliot Claveau, honorary fellow in the Department of Physics and experimental scientist at Realta Fusion, raises his hands in celebration of achieving a plasma from the control room at the Wisconsin HTS Axisymmetric Mirror Project (WHAM) experiment being conducted at the Wisconsin Plasma Physics Laboratory in Stoughton, Wisconsin on July 16, 2024. Part of a public-private partnership between UW–Madison and Realta Fusion Inc, the WHAM achieved the milestone of creating plasma as part of fusion energy research. (Photo by Bryce Richter / UW–Madison)

 

The Wisconsin HTS Axisymmetric Mirror Project (WHAM) experiment being conducted at the Wisconsin Plasma Physics Laboratory in Stoughton, Wisconsin is pictured on July 16, 2024. Part of a public-private partnership between UW–Madison and Realta Fusion Inc, the WHAM achieved the milestone of creating plasma as part of fusion energy research. (Photo by Bryce Richter / UW–Madison)

 

an animated GIF showing fusion at the particle/atomic level, moving from lithium + neutron = tritium + helium waste. Then, tritium + deuterium = neutron + helium waste + lots of energy
The fusion reaction at the atomic level. | Credit: Sarah Perdue, UW–Madison Physics

Stas Boldyrev earns DOE funding to investigate turbulence in relativistic plasmas

This post was adapted from a U.S. Department of Energy announcement

profile photo of Stas Boldyrev
Stas Boldyrev

 The U.S. Department of Energy (DOE) announced August 23 that it is funding $9.96M to support research in basic plasma science and engineering as well as frontier plasma science experiments at several midscale DOE Collaborative Research Facilities (CRFs) across the nation. The funding will go to 20 universities — including to UW–Madison physics professor Stas Boldyrev — four private companies, and one national laboratory.

The funding will cover 30 awards aimed at supporting basic plasma science research as well as increasing research productivity and participation of U.S. researchers in the CRFs. The awards include three-year single investigator or small group projects as well as short-term, one-time seed funding projects.

“Basic and low temperature plasma science is an important area with many scientific and technological impacts,” said Jean Paul Allain, DOE Associate Director of Science for Fusion Energy Sciences. “The research funded under this FOA will enable the U.S research community to address many fundamental and technological science challenges helping to ensure continued American leadership in this critical field.”

Boldyrev’s award will investigate turbulence in relativistic plasmas, which is more poorly understood compared to its non-relativistic counterpart. Relativistic plasma turbulence exists in extremely hot and energetic natural systems, where plasma and/or particle flow rates approach the speed of light, and it is required to explain radiation spectra of space phenomena such as solar flares or galactic nuclei jets.

“This project intends to develop analytical, phenomenological, and numerical models of turbulent energy cascades, and describe how such turbulence interacts with magnetic fields,” Boldyrev says. “We will concentrate on universal statistical properties of relativistic turbulence, which makes the results applicable to various lab, space, and astronomy environments, where such turbulence is present.”

Vadim Roytershteyn of the Space Science Institute is a co-investigator.