For this award, postdocs write a short article that describes their research for the general public. Interested postdocs apply to submit an article, then receive guidelines and editorial assistance to improve accessibility. Approved articles are posted on the WISL website, and the author receives a $250 award.
Islam’s article, “Navigating Anomalies in the Pursuit of New Physics” shares how particle physicists study the fundamental building blocks of the universe, exploring the complex behaviors of subatomic particles that shape our world.
“As a postdoctoral researcher, my journey is not limited to research alone,” Islam says in the article. “It comes with an important responsibility to share the wonders and experiences of scientific research with diverse communities.”
The dual mission of the Wisconsin Initiative for Science Literacy is to promote literacy in science, mathematics and technology among the general public and to attract future generations to careers in research, teaching and public service. WISL is directed by Professor Bassam Z. Shakhashiri of the University of Wisconsin-Madison Chemistry Department. Programs draw on the concepts developed by Dr. Shakhashiri during many years of innovative work in science education.
Higgs @ Ten: UW–Madison physicists’ past and future roles
Posted on
Ten years ago, on July 4, 2012, the CMS and ATLAS collaborations at the Large Hadron Collider (LHC) at CERN — including many current and former UW–Madison physicists — announced they had discovered a particle that was consistent with predictions of the Higgs boson.
In the ten years since, scientists have confirmed the finding was the Higgs boson, but its discovery opened more avenues of discovery than it closed. Now, with the LHC back up and running, delivering proton collisions at unprecedented energies, high energy physicists are ready to investigate even more properties of the particle.
“The Higgs plays an incredibly important role in particle physics,” says Kevin Black, who previously worked on ATLAS before joining the UW–Madison physics department and is now part of CMS. “But for being such a fundamental particle, for giving mass to all elementary particles, for being deeply connected to flavor physics and why we have different generations of matter particles — we know a relatively small amount about it.”
Finding the Higgs particle had been one of the main goals of the LHC. The particle was first theorized by physicist Peter Higgs (amongst others, but his name was forever associated with it) in the 1960s.
“The basic idea was that if you just had electromagnetic and strong interactions, then the theory would have been fine if you just put a mass in by hand for the elementary particles,” explains Black. “The weak interaction spoils that, and it was a big question at the time of whether or not the whole structure of particle physics and of quantum field theory were actually going to be consistent.”
Higgs and others realized that there was a way to make it happen if they introduced a new field, which then became the Higgs field and the Higgs particle, that can interact with all other matter and give particles their mass. The Higgs particle, however, eluded experimental observation, leaving a gap in the Standard Model. In retrospect, one of the difficulties was that the mass of the Higgs — around 125 GeV — was much larger than the technology at the time could reach experimentally.
In earlier generations of experiments, UW–Madison physicist Sau Lan Wu participated in searches using the ALEPH experiment that placed a strong lower bound on the mass of the Higgs boson. Also at UW–Madison, Duncan Carlsmith, Matthew Herndon and their groups participated in searches at the CDF experiment that placed an upper bound on the mass of the Higgs boson and saw evidence of Higgs production in the region of mass where it was finally discovered.
This research set the stage for the experiments that were perfectly designed to discover the Higgs boson: the world’s most powerful hadron collider, the LHC, and the most capable pair of high energy collider experiments ever built, CMS and ATLAS.
The UW–Madison CMS group had three major projects: the trigger project led by Wesley Smith (now emeritus faculty), and the end cap muon system led by Don Reeder (now emeritus faculty) and Dick Loveless (now emeritus scientist), and a computing project led by Sridhara Dasu, who is current head of the group. Having made essential detector contributions, the UW–Madison CMS group, including Herndon, moved on to Higgs hunting and the discoveries. The group, now bolstered by the addition of Black and Tulika Bose to the physics department faculty, continues the work of understanding the Higgs Boson thoroughly.
The UW–Madison ATLAS group, founded and led by Wu, is an important leader of Higgs physics. The group is fortunate to attract another important leader of ATLAS, Higgs physicist Kyle Cranmer, who recently joined UW–Madison as physics department faculty and the director of the American Family Data Science Institute.
Both CMS and ATLAS announced the discovery, made separately but concurrently, in 2012. When it was first discovered, it conformed to expected energies and momentum of the Higgs, but finding it in this rare decay mode was unexpected, so LHC scientists called it the Higgs-like particle for a while.
At 3:00pm [on June 25, 2012], there was a commotion in the Wisconsin corridor on the ground floor of CERN Building 32. My graduate student Haichen Wang was saying loudly, ‘Haoshuang is going to announce the Higgs discovery!’ Our first reaction was that it was a joke; thus when we entered Haoshuang’s office, we all had smiles on our faces. Those smiles suddenly became much bigger when we got to look at the result of Haoshuang’s combination: It showed the 5.08s close to the Higgs mass of 125GeV/c2. Pretty soon, cheers were ringing down the Wisconsin corridor.
ATLAS had a discovery!”
The Higgs-like announcement from ten years ago has since been confirmed to be the Higgs particle. Several years later, Dasu’s group’s work saw the Higgs decay into the tau, and provided the first evidence of the particle coupling to matter particles, not just to bosons.
On the ten-year anniversary, both ATLAS and CMS collaborations published summaries of their findings to date and future directions. Experimental questions still being addressed include continuing to measure higher-precision interactions between the Higgs and particles it has already been observed to interact with, and detecting previously-unobserved interactions between the Higgs and other particles.
“One big question that immediately comes to my mind is the mass problem. The breakthrough generated by the Higgs discovery was that elementary particles acquire their masses through the Higgs particle,” Wu writes in her Physics Today essay. “A deeper question that needs to be answered is how to explain the values of the individual masses of the elementary particles. In my mind, this mass problem remains a big topic to be explored in the years to come.”
“Another one of the big things that we’re looking for in future data is to understand Higgs potential,” Black says. “Right now, by measuring the mass, we’ve only measured right around its ground state, and that has great implications for the stability of our universe.”
Also on the ten-year anniversary, CERN announced that the LHC — which had been shut down for three years to work on upgrades — was ready to again start delivering proton collisions at an unprecedented energy of 13.6 TeV in its third round of runs. It is expected that the ATLAS and CMS detectors will record more collisions in this upcoming run than in the previous two combined.
The LHC program is scheduled to run through 2040, and the UW–Madison scientists who are part of the CMS and ATLAS collaborations will almost certainly continue to play key roles in future discoveries.
UW–Madison’s current CMS collaboration members include Kevin Black, Tulika Bose, Sridhara Dasu, and Matthew Herndon, and their research groups. Current ATLAS collaboration members include Kyle Cranmer and Sau Lan Wu and their research groups.
Brian Rebel promoted to full professor
Posted on
The Department of Physics is happy to announce that Professor Brian Rebel has been promoted to full professor.
Rebel is a high energy experimentalist whose research focuses on accelerator-based neutrino physics. He joined the department as an associate professor with a joint appointment at Fermilab in 2018, where he is now a senior scientist.
“Professor Rebel is a leader in neutrino science, making major contributions to DUNE experiments and having published recently on four different neutrino collaborations,” says Mark Eriksson, physics department chair. “The department is thrilled about his promotion to full professor.”
Rebel has established himself as a leader in the Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). DUNE is an international experiment for neutrino science and proton decay studies that consists of two neutrino detectors — one near Fermilab in Illinois, and one in South Dakota. The experiment will be installed in LBNF, which will produce the neutrino beam. Rebel is currently the DUNE Anode Plane Assembly (APA) consortium manager, and has previously led Fermilab’s DUNE Science Group.
Since 2005, Rebel has also been involved in Fermilab’s NOvA experiment, which uses precision measurements to investigate the flavor oscillations of neutrinos that are not predicted by the Standard Model. He is currently serving as the co-convener of the analysis group searching for oscillations of active neutrino flavors into a sterile neutrino.
Rebel is currently training three graduate students and two postdoctoral scholars, and expects to graduate his first UW–Madison doctoral student soon. Additionally, he supervised several trainees at Fermilab before he came to UW–Madison. He has enjoyed teaching both introductory physics as well as physics courses for non-majors, and is an effective and engaging teacher.
Congrats, Prof. Rebel, on this well-deserved recognition!
Machine Learning meets Physics
Posted on
Machine learning and artificial intelligence are certainly not new to physics research — physicists have been using and improving these techniques for several decades.
In the last few years, though, machine learning has been having a bit of an explosion in physics, which makes it a perfect topic on which to collaborate within the department, the university, and even across the world.
“In the last five years in my field, cosmology, if you look at how many papers are posted, it went from practically zero to one per day or so,” says assistant professor Moritz Münchmeyer. “It’s a very, very active field, but it’s still in an early stage: There are almost no success stories of using machine learning on real data in cosmology.”
Münchmeyer, who joined the department in January, arrived at a good time. Professor Gary Shiu was a driving force in starting the virtual seminar series “Physics ∩ ML” early in the pandemic, which now has thousands of people on the mailing list and hundreds attending the weekly or bi-weekly seminars by Zoom. As it turned out, physicists across fields were eager to apply their methods to the study of machine learning techniques.
“So it was natural in the physics department to organize the people who work on machine learning and bring them together to exchange ideas, to learn from each other, and to get inspired,” Münchmeyer says. “Gary and I decided to start an initiative here to more efficiently focus department activities in machine learning.”
Currently, that initiative includes Münchmeyer, Shiu, Tulika Bose, Sridhara Dasu, Matthew Herndon, and Pupa Gilbert, and their research group members. They watch the Physics ∩ ML seminar together, then discuss it afterwards. On weeks that the virtual seminar is not scheduled, the group hosts a local speaker — from physics or elsewhere on campus — who is doing work in the realm of machine learning.
In the next few years, the Machine Learning group in physics looks to build on the momentum the field currently has. For example, they hope to secure funding to hire postdoctoral fellows who can work within a group or across groups in the department. Also, the hiring of Kyle Cranmer — one of the best-known researchers in machine learning for physics — as Director of the American Family Data Science Institute and as a physics faculty member, will immediately connect machine learning activities in this department with those in computer sciences, statistics, and the Information School, as well other areas on campus.
“There are many people [on campus] actively working on machine learning for the physical sciences, but there was not a lot of communication so far, and we are trying to change that,” Münchmeyer says.
Machine Learning Initiatives in the Department (so far!)
Kevin Black, Tulika Bose, Sridhara Dasu, Matthew Herndon and the CMS collaboration at CERN use machine learning techniques to improve the sensitivity of new physics searches and increase the accuracy of measurements.
Pupa Gilbert uses machine learning to understand patterns in nanocrystal orientations (detected with her synchrotron methods) and fracture mechanics (detected at the atomic scale with molecular dynamics methods developed by her collaborator at MIT).
Moritz Münchmeyer develops machine learning techniques to extract information about fundamental physics from the massive amount of complicated data of current and upcoming cosmological surveys.
Gary Shiu develops data science methods to tackle computationally complex systems in cosmology, string theory, particle physics, and statistical mechanics. His work suggests that Topological Data Analysis (TDA) can be integrated into machine learning approaches to make AI interpretable — a necessity for learning physical laws from complex, high dimensional data.
Study of high-energy particles leads PhD student Alex Wang to Department of Energy national lab
In 2012, scientists at CERN’s Large Hadron Collider announced they had observed the Higgs boson particle, verifying many of the theories of physics that rely on its existence.
Since then, scientists have continued to search for the properties of the Higgs boson and for related particles, including an extremely rare case where two Higgs boson particles appear at the same time, called di-Higgs production.
“We’ve had some searches for di-Higgs right now, but we don’t see anything significant yet,” said Alex Wang, a PhD student in experimental high energy physics at UW–Madison. “It could be because it doesn’t exist, which would be interesting. But it also could just be because, according to the Standard Model theory, it’s very rare.”
Wang will have a chance to aid in the search for di-Higgs production in more ways than one. Starting in November, he will spend a year at the SLAC National Accelerator Laboratory as an awardee in the Department of Energy Office of Science Graduate Student Research Program.
The program funds outstanding graduate students to pursue thesis research at Department of Energy (DOE) laboratories. Students work with a DOE scientist on projects addressing societal challenges at the national and international scale.
At the SLAC National Accelerator Laboratory, Wang will primarily work on hardware for a planned upgrade of the ATLAS detector, one of the many detectors that record properties of collisions produced by the Large Hadron Collider. Right now, ATLAS collects an already massive amount of data, including some events related to the Higgs boson particle. However, Higgs boson events are extremely rare.
In the future, the upgraded High-Luminosity Large Hadron Collider (HL-LHC) will enable ATLAS to collect even more data and help physicists to study particles like the Higgs boson in more detail. This will make it more feasible for researchers to look for extremely rare events such as di-Higgs production, Wang said. The ATLAS detector itself will also be upgraded to adjust for the new HL-LHC environment.
“I’m pretty excited to go there because SLAC is essentially where they’ll be assembling the innermost part of the ATLAS detector for the future upgrade,” Wang said. “So, I think it’s going to be a really central place in the future years, at least for this upgrade project.”
Increasing the amount of data a sensor collects can also cause problems, such as radiation damage to the sensors and more challenges sorting out meaningful data from background noise. Wang will help validate the performance of some of the sensors destined for the upgraded ATLAS detector.
“I’m also pretty excited because for the data analysis I’m doing right now, it’s mainly working in front of a computer, so it will be nice to have some experience working with my hands,” Wang said.
At SLAC, he will also spend time searching for evidence of di-Higgs production.
Wang’s thesis research at UW–Madison also revolves around the Higgs boson particle. He sifts through data from the Large Hadron Collider to tease out which events are “signals” related to the Higgs boson, versus events that are “backgrounds” irrelevant to his work.
One approach Wang uses is to predict how many signal events researchers expect to see, and then determine if the number of events recorded in the Large Hadron Collider is consistent with that prediction.
“If we get a number that’s consistent with our predictions, then that supports the existing model of physics that we have,” Wang said. “But for example, if you see that the theory predicts we’d have 10 events, but in reality, we see 100 events, then that could be an indication that there’s some new physics going on. So that would be a potential for discoveries.”
The Department of Energy formally approved the U.S. contribution to the High-Luminosity Large Hadron Collider accelerator upgrade project earlier this year. The HL-LHC is expected to start producing data in 2027 and continue through the 2030s. Depending on what the future holds, Wang may be able to use data from the upgraded ATLAS detector to find evidence of di-Higgs production. If that happens, he also will have helped build the machine that made it possible.
Celebrating IceCube’s first decade of discovery
Posted on
It was the beginning of a grand experiment unlike anything the world had ever seen. Ten years ago today, the IceCube Neutrino Observatory fully opened its eyes for the first time.
Over the course of the previous seven years, dozens of intrepid technicians, engineers, and scientists had traveled to the South Pole—one of the coldest, driest, and most isolated places on Earth—to build the biggest, strangest telescope in the world. Crews drilled 86 holes nearly two-and-a-half kilometers deep and lowered a cable strung with 60 basketball-sized light detectors into each hole. The result was a hexagonal grid of sensors embedded in a cubic kilometer of ice about a mile below the surface of the Antarctic ice sheet. On December 18, 2010, the 5,160th light sensor was deployed in the ice, completing the construction of the IceCube Neutrino Observatory.
The purpose of the unconventional telescope was to detect signals from passing astrophysical neutrinos: mysterious, tiny, extremely lightweight particles created by some of the most energetic and distant phenomena in the cosmos. IceCube’s founders believed that studying these astrophysical neutrinos would reveal hidden parts of the universe. Over the course of the next decade, they would be proven right.
IceCube began full operations on May 13, 2011 — ten years ago today — when the detector took its first set of data as a completed instrument. Since then, IceCube has been watching the cosmos and collecting data continuously for a decade.
During its first few years of operation, IceCube accumulated vast amounts of data, but it wasn’t until 2013 that the observatory yielded its first major results.
CMS Group publishes new study on Lepton flavor in Higgs boson decays
Posted on
Neutrinos mix and transform from one flavor to the other. So do quarks. However, electron and its heavier cousins, the muon and the tau, seem to conserve their flavor identity. This accidental conservation of charged lepton flavor must have a profound reason, or low-levels of violation of that conservation principle should occur at high energy scales. However, evidence for any charged lepton flavor violation remains elusive.
The CMS group recently published a new study on Lepton flavor in Higgs boson decays. At UW–Madison, the effort was led by Sridhara Dasu and postdoctoral researcher Varun Sharma, building off of work done by former postdoctoral researcher Maria Cepeda and former graduate student Aaron Levine.
The international CMS collaboration recently published a news story about this new study. Please read the full story here.
IceCube detection of a high-energy particle proves 60-year-old theory
Posted on
On Dec. 8, 2016, a high-energy particle hurtled to Earth from outer space at close to the speed of light. The particle, an electron antineutrino, smashed into an electron deep inside the ice sheet at the South Pole. This collision produced a particle that quickly decayed into a shower of secondary particles, triggering the sensors of the IceCube Neutrino Observatory, a massive telescope buried in the Antarctic glacier.
IceCube had seen a Glashow resonance event, a phenomenon predicted by Nobel laureate physicist Sheldon Glashow in 1960. With this detection, scientists provided another confirmation of the Standard Model of particle physics. It also further demonstrated the ability of IceCube, which detects nearly massless particles called neutrinos using thousands of sensors embedded in the Antarctic ice, to do fundamental physics. The result was published March 10 in Nature.
The Daya Bay Reactor Neutrino Experiment collaboration – which made a precise measurement of an important neutrino property eight years ago, setting the stage for a new round of experiments and discoveries about these hard-to-study particles – has finished taking data. Though the experiment is formally shutting down, the collaboration will continue to analyze its complete dataset to improve upon the precision of findings based on earlier measurements.
The detectors for the Daya Bay experiment were built at UW–Madison by the Physical Sciences Laboratory, and detailed in a 2012 news release.
Says PSL’s Jeff Cherwinka, U.S. chief project engineer for Daya Bay:
The University of Wisconsin Physics Department and the Physical Sciences Lab were very involved in the design, fabrication and installation of the anti-neutrino detectors for the Daya Bay Experiment. It was a great opportunity for faculty, staff, and students to participate in an important scientific measurement, while learning about another country and culture. There were many trips and man years of effort in China by UW physicists, engineers and technicians to construct the experiment and many more for operations and data taking. This international collaboration took a lot of effort, and in the end produced great results.
The chief experimentalist at UW–Madison was Karsten Heeger who has since left for Yale. At present, Prof. Baha Balantekin is the only one remaining at UW–Madison in the Daya Bay Collaboration.
Researchers awarded Department of Energy Quantum Information Science Grant
Posted on
Three UW–Madison physics professors and their colleagues have been awarded a U.S. Department of Energy (DOE) High Energy Physics Quantum Information Science award for an interdisciplinary collaboration between theoretical and experimental physicists and experts on quantum algorithms.
The grant, entitled “Detection of dark matter and neutrinos enhanced through quantum information,” will bring a total of $2.3 million directly to UW-Madison. Physics faculty include principal investigator Baha Balantekin as well as Mark Saffman, and Sue Coppersmith. Collaborators on the grant include Kim Palladino at the University of Oxford, Peter Love at Tufts University, and Calvin Johnson at San Diego State University.
With the funding, the researchers plan to use a quantum simulator to calculate the detector response to dark matter particles and neutrinos. The simulator to be used is an array of 121 neutral atom qubits currently being developed by Saffman’s group. Much of the research plan is to understand and mitigate the behavior of the neutral atom array so that high accuracy and precision calculations can be performed. The primary goal of this project is to apply lessons from the quantum information theory in high energy physics, while a secondary goal is to contribute to the development of quantum information theory itself.