IceCube Collaboration awarded 2021 Rossi Prize

The 2021 Bruno Rossi Prize was awarded to Francis Halzen and the IceCube Collaboration “for the discovery of a high-energy neutrino flux of astrophysical origin.”

The Bruno Rossi Prize is awarded annually by the High Energy Astrophysics Division of the American Astronomical Society. The 2021 HEAD awards were announced last night at the 237th AAS Meeting, which is being held virtually. Named after Italian experimental physicist Bruno Rossi—who made major contributions to particle physics and the study of cosmic rays, launched the field of X-ray astronomy, and discovered the first X-ray source, SCO X-1—the Rossi Prize is awarded “for a significant contribution to High Energy Astrophysics, with particular emphasis on recent, original work.”

The IceCube Collaboration is made up of over 300 researchers from 12 institutions in 53 countries. Halzen, the Hilldale and Gregory Breit Distinguished Professor of Physics at the University of Wisconsin–Madison, is the principal investigator of IceCube. The international group maintains and operates the IceCube Neutrino Observatory, a cubic kilometer of ice at the South Pole instrumented with optical sensors that can detect signals from high-energy neutrinos from outer space.

Read the full story at IceCube’s website

Scientists Say Farewell to Daya Bay Site

The Daya Bay Reactor Neutrino Experiment collaboration – which made a precise measurement of an important neutrino property eight years ago, setting the stage for a new round of experiments and discoveries about these hard-to-study particles – has finished taking data. Though the experiment is formally shutting down, the collaboration will continue to analyze its complete dataset to improve upon the precision of findings based on earlier measurements.

The detectors for the Daya Bay experiment were built at UW–Madison by the Physical Sciences Laboratory, and detailed in a 2012 news release.

Says PSL’s Jeff Cherwinka, U.S. chief project engineer for Daya Bay:

The University of Wisconsin Physics Department and the Physical Sciences Lab were very involved in the design, fabrication and installation of the anti-neutrino detectors for the Daya Bay Experiment.  It was a great opportunity for faculty, staff, and students to participate in an important scientific measurement, while learning about another country and culture.  There were many trips and man years of effort in China by UW physicists, engineers and technicians to construct the experiment and many more for operations and data taking.  This international collaboration took a lot of effort, and in the end produced great results.

The chief experimentalist at UW–Madison was Karsten Heeger who has since left for Yale. At present, Prof. Baha Balantekin is the only one remaining at UW–Madison in the Daya Bay Collaboration.

A completion ceremony will be held Friday, December 11from 7:30-8:3opm CST. Video stream options and the full story can be found at Berkeley Lab’s website.

Researchers awarded Department of Energy Quantum Information Science Grant

Three UW–Madison physics professors and their colleagues have been awarded a U.S. Department of Energy (DOE) High Energy Physics Quantum Information Science award for an interdisciplinary collaboration between theoretical and experimental physicists and experts on quantum algorithms.

The grant, entitled “Detection of dark matter and neutrinos enhanced through quantum information,” will bring a total of $2.3 million directly to UW-Madison. Physics faculty include principal investigator Baha Balantekin as well as Mark Saffman, and Sue Coppersmith. Collaborators on the grant include Kim Palladino at the University of Oxford, Peter Love at Tufts University, and Calvin Johnson at San Diego State University.

With the funding, the researchers plan to use a quantum simulator to calculate the detector response to dark matter particles and neutrinos. The simulator to be used is an array of 121 neutral atom qubits currently being developed by Saffman’s group. Much of the research plan is to understand and mitigate the behavior of the neutral atom array so that high accuracy and precision calculations can be performed. The primary goal of this project is to apply lessons from the quantum information theory in high energy physics, while a secondary goal is to contribute to the development of quantum information theory itself.